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INTRODUCTION

Body fluids are good electrical conductors because salts and other
molecules dissociate into positive and negative ions. The inside of an
axon is filled with an ionic fluid that is separated from the surrounding
body fluid by a thin membrane that is from about 5 nm to 10 nm thick.
The ionic solutes in the extracellular fluid are mainly Na™ and CI" ions.
In the intracellular fluid, the positive ions are mainly K™ and the
negative ions are mainly large negatively charged organic ions. Hence,
there is a large concentration of Na" ions outside the axon and a large
concentration of K™ ions inside the axon. The concentration of the
different ion species does not equalize by diffusion because of the

special properties of the cell membrane. In the resting state when the
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axon is non-conducting, the axon membrane is highly permeable to K™
ions, slightly permeable to Na" ions and impermeable to large negative
organic ions. More K™ ions leak out of the cell than Na" ions that leak
into the cell. This leaves the inside of the cell more negative than the
outside. A potential difference therefore exists across the cell
membrane because of the difference in the concentration of ions in the
extracellular and intracellular fluids. This potential difference is called
the membrane potential v,,(¢). The outside of the cell is taken as the
reference potential 0 V. The resting membrane potential has a strong
negative polarization and is constant at about -65 mV. This negative
membrane potential restricts the further diffusion of the K™ to the
outside of the cell so that equilibrium is established where the electrical
forces balance the chemical forces. Thus, the membrane acts as a

capacitor in parallel with a resistor.

The mechanism for the generation of an electrical signal by a neuron is
conceptually simple. When a neuron receives a sufficient stimulus from
another neuron, the permeability of the cell membrane changes. As a
result of the changes in membrane permeability, the sodium ions first
rush into the cell while the potassium ions flow out of it. The
movement of the ions across the membrane constitutes an electric
current signal which propagates along the axon to its terminations.
These membrane currents depolarize the cell so that the interior of the
cell becomes positive and a neuronal voltage signal 1s generated. These

short voltage pulses are called spikes or action potentials and have a



duration of less than a few milliseconds and have a peak about +40 mV.
The action potential propagates along an axon without a change in
shape. We can model the membrane of a neuron as a RC circuit as

shown in figure 1.
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Fig. 1. RC circuit model of the nerve cell membrane used in the LIF

model.
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Kirchhoff’s current law

I =I.+I, 7=RC

Equation 1 is the leaky integrate-and-fire (LIF) differential equation

for the membrane potential v, where 7= RCis the membrane time

constant and v, 1s the resting potential of the membrane

d
[ vm = O Iext = O vm (t) = vrest j :
dt

We can solve equation 1 using the fourth order Runge-Kutta method

to compute the membrane potential at a series of time steps of duration

At .

The spiking events are not explicitly modelled in the LIF model.
Instead, when the membrane potential v,(¢) reaches a certain threshold
vrr (spiking threshold), it is instantaneously reset to a lower value Vyeser
(reset potential) and the leaky integration process described by
equation 1 continues with the membrane potential set at v,..... However,

we can artificially produce a spike when v, (¢) > v,, by setting

v ()=v

ke then v, (f+Ar)=v

reset *



To add just a little bit of realism to the dynamics of the LIF model, it is

possible to add an absolute refractory period ¢ ,,, immediately after a

spike is generated when v_(#) =v During the absolute refractory

spike *
period, v,, can be clamped to v,..: and the leaky integration process re-

initiated following a delay of ¢ ., after the spike.

SIMULATIONS

The Python Code mns004.py is used to solve the system equation
(equation 1) using the Runge-Kutta method. The variable flag is used to

select the function for the external stimulus current.

Typical parameters used in the modelling are:
N=5000 R=10"Q 7=10 ms
=—60mV v, =-30mV v__ =-80mV

‘)rest reset

l)gpike

=+20mV ¢ ,,=5ms
Simulation1 (flag =0)

I..: = 0 Exponential relaxation to resting potential
The membrane potential if disturbed from its resting potential and no
spike is fired then the membrane potential will relax back to the resting
potential. The relaxation time is determined by the time constant

(r =RC ), the larger the time constant, the more slowly the membrane

potential flows appraoches the resting value as shown in figure 1.1.
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Fig. 1.1. Time evolution of the membrane potential for initial
conditions Vo =-32 mV and V= -100 mV. The membrane potential v,,
relaxes to the resting membrane potential v,.s = -60 mV. The rate of
relaxation is determined by the time constant 7. The larger the value of
the time constant, the slower the relaxation. Blue curves 7 =10 ms and

black curves 7 =30 ms.

Simulation 2 (flag = 1)
Single pulse external current stimulus

The system is described by the ODE

dv,

(D TW

= _(vm o vresz)+ Rlext

When a short pulse acts as the external stimulus most of the charge QO
is deposited onto the capacitor and very little charge passes through the
resistor. Initially the capacitor is charged and then discharges through

the resistor as the input stimulus value goes to zero. For a short



external current pulse with duration Az where A¢ << 7 and height /.

then

v(t+ At) =(

At R
j»{t)+—(;§2§j13tfm¢ O =V, () = Vi

and the charge Q = A¢/__ then we get

Q) v(t+A) =v{)+Q/C

So, the charge O must have a threshold value Oy 1f the membrane

potential is to exceed the threshold potential.
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=4.74nA, Q = 47.4 pC
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QO < Qrw since no spike is fired, max(vy) < vr.
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Fig 2.2. Short pulse: At = 10 ms, lna =4.75A, Q =47.5 pC
O > QOry since a spike 1s fired, max(vy,) > vru.

From figures 2.1 and 2.2 the threshold value of the charge can be
approximated to be Q,,, =47.45 pC. Figure 2.3 shows a shorter pulse

with a greater amplitude but with the same area under the ¢ vs I, plot,
so the same charge Q is deposited and this results in an identical

spiking of the neuron.
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Fig 2.3. Short pulse: Az = 5 ms, Ins = 9.50A, @ =47.5 pC
O > QOry since a spike 1s fired, max(vy,) > vru.

Simulation 3 (flag = 2)

Double pulse external current stimulus
Assume the first pulse results in the neuron spiking as shown in figure
3. We can ask the question; will a second pulse also produce a spike?

Pulse 1:
At=10ms I =480nA Q=48.00pC



Pulse 2 (figure 3.1):
At=10ms I =480nA O =48.00pC
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Fig. 3.1. The first pulse (pulse 1) produces a spike, but the second

identical pulse (pulse 2) does not.

The second pulse occurs in a relative refractory period where the

membrane potential has not as yet relaxed back to its resting potential.
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Pulse 2 (figure 3.2):
At=10ms I =5.00nA Q=50.00pC

By increasing Iy, sufficient charge is now delivered to produce the

second spike.
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Fig. 3.2. Both pulses now cause an action potential.

If the second pulse arrives in the absolute refractory period after the
first spike, then it is unlikely that the neuron will fire and produce a

second spike.
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Pulse 2 (figure 3.3):
At=10ms I__=7.00nA Q=70.00pC
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Fig. 3.3. Generally, a spike will not be fired if the second pulse occurs

in the absolute refractory period.

Simulation 4 (flag 3)

Series of input pulses for the external current stimulus
A series of input pulses results in a linear summation of the membrane
response to each pulse. If the membrane potential remains at a value
less than the threshold potential then no spikes are generated. Only
when the summation of the input pulses causes the membrane potential

to reach the threshold potential does a spike occur as shown in figure 4.
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Fig. 4. Top input pulse /. = 4.8 nA and bottom pulse /. = 4.9 nA.

This 1in some sense is a realistic situation where the neuron 1s

stimulated by pre-synaptic spikes arriving at its synapses. The pre-

synaptic spikes are linearly summed to give the input current and

when the threshold voltage is reached, a spike is generated.
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Simulation 5

(flag 4)

Step external current stimulus

A step input stimulus of sufficient strength may result in a continual
firing of the neuron at regular intervals as shown in figure 5.

Provided the neuron fires then the firing rate increases with the

strength of the external current step.
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Fig. 5. Membrane potential response to a step external current
stimulus. If the neuron fires, the frequency of the spiking

increases with the height of the step.
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Simulation 6 (flag =5)
Ramp input

A ramp input stimulus produces action potentials with an increasing

firing rate as the input strength increases (figure 6)
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Fig. 6.1. Firing rate of neuron increases as strength of the input

stimulus increases.

150 -
y
— 100 -
0 10 20 30 40
lext [ NA]

Fig. 6.2. An action potential is not produced until the external
current exceeds a critical value which has a value of about 7.5 nA.
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