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FINITE DIFFERENCE METHOD:  

NUMERICAL ANAYSIS OF RL CIRCUITS 
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Please email any corrections, comments, suggestions or 

additions:   matlabvisualphysics@gmail.com 

Matlab Download Directory 

 

CNRL.m 

Modelling RL circuits using the finite difference method to 

approximate the current through an inductor in a series RL circuit. 

Many different input signals can be used to calculate the 

response of the circuit. Circuit parameters in set in the INPUT 

section of the script. The variable flagV is used to select the input 
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signal voltage using the switch/case commands. The input signal 

and time scales are changed within the switch/case statements.  

It may be necessary to change the axis limits of a graph to 

improve its appearance using 

 set(gca,'xLim',[0 1e3*max(t)]); 

     set(gca,'yTick',-10:5:10); 

     set(gca,'yLim',[-VS-0.2 VS+0.2]); 

 

Finite Difference Method and RL Circuits 

Using the finite difference method, RL circuits can be 

investigated in much more detail than could be done by the 

traditional analytical methods most often employed. The 

response of RL circuits can be model for a wide range of input 

signals with just one Matlab script. The script CNRL.m models a 

series RL circuit as shown in figure 1. 

 

            Fig. 1.  RC circuit model with the script CNRL.m  
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The response of the circuit to an input signal is calculated using 

Kirchhoff’s Voltage and Current Laws and using the finite 

difference approximation for the voltage across the inductor  

  ( ) ( ) ( ) /L L Li t i t t v t t t L        

 

The finite difference method to analyse the RL circuit is done in 

the following sequence of steps. 

 

Step 1: Specify the input source voltage ( )Sv t  as a function of 

time. This is done within the switch/case statements using the 

variable flagV.  FlagV = 4 gives a sinusoidal source emf expressed 

as a complex function. Using complex functions makes it possible 

to calculate the magnitude, real part, imaginary part and phase 

of a complex variable.   

% Source emf: flagV = 1  step function off/on 
%             flagV = 2  step function on/off 
%             flagV = 3  pulses (square wave) 
%             flagV = 4  sinusoidal emf 
%             flagV = 5  rectified sinusoidal emf 
%             flagV = 6  superposition of sinusoidal emfs 
  flagV = 4; 
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Step 2: Set all the initial values for the voltage and current 

variables. 

Step 3: Evaluate the voltages and currents at the first time step.  

   k = dt/L; 
%  Initialise values  
  vR = zeros(1,N); 
  vL = zeros(1,N); 
  iS = zeros(1,N); 

     

%  Time Step #1 
  if flagV == 2 
     iS(1) = vS(1)/R; 
     vR(1) = vS(1); 
  end 

 

Step 4: Calculate the voltages and currents all time steps. 

% Time Steps #2 to #N 
  for c = 2 : N 
    iS(c) = iS(c-1) + k*vL(c-1); 
    vR(c) = iS(c) * R; 
    vL(c) = vS(c) - vR(c); 
  end 

 

You will notice that the code is very simple in implementing the 

finite difference method. There are no differential equations to 

solve and no complex algebraic expressions.  
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Step 5: Calculate the power and energies absorbed or supplied to 

the circuit. The power ( )p t  for an element is calculated from the 

relationship 

  ( ) ( ) ( )p t v t i t  

and the energies ( )u c  at time step c from the relationship 

   
1

1

( ) ( 1) ( )
c

u c u c p c t


     

 

% Powers and energy 
     pS = real(vS) .* real(iS); 
     pR = real(vR) .* real(iS); 
     pL = real(vL) .* real(iS); 

      

     uS = zeros(1,N); uR = zeros(1,N); uL = zeros(1,N); 
     for c = 2 : N 
         uS(c) = uS(c-1) + pS(c)*dt; 
         uR(c) = uR(c-1) + pR(c)*dt; 
         uL(c) = uL(c-1) + pL(c)*dt; 
     end 
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Step 6: Calculate phases of the source, resistor and inductor 

voltages and the phase of the current at a specified time step. 

For the sinusoidal source emf, the impedances and their phases 

are calculated. 

 

% Phases  [degrees] 
% INPUT time to calculate phasors 
     tP = 0.75*tMax; 

      

     nP = find(t > tP,1); 
     phi_vS   = rad2deg(angle(vS(nP))); 
     phi_vR   = rad2deg(angle(vR(nP))); 
     phi_vL   = rad2deg(angle(vL(nP))); 
     theta_iS = rad2deg(angle(iS(nP))); 

      

     if flagV == 4 
        [iS_Peaks, t_Peaks] = findpeaks(real(iS)); 
       nPeaks = length(t_Peaks)-1; 
       T_Peaks = (t(t_Peaks(end)) - t(t_Peaks(end-

nPeaks)))/(nPeaks); 
       f_Peaks = 1 / T_Peaks; 

        

       ZR = R; 
       ZL = 1j * w*L; 
       Z = ZR + ZL; 
       Zmag = abs(Z); 
       phi_ZR = rad2deg(angle(ZR)); 
       phi_ZL = rad2deg(angle(ZL)); 
       phi_Z = rad2deg(angle(Z)); 
     end 
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For accurate results the time increment t  should be chosen so 

that 

 /t L R          where is the time constant 

The time step is set to / 1000t    in the script CNRL.m. 

% Time constant and time step 
   tau = L/R; 
   dt = tau/1000; 

  

The inductor and resistor are in series and so must have the 

same current through them at any instant 

  ( ) ( ) ( )S R Li t i t i t   

The Kirchhoff’s Voltage Law must be satisfied at any instant, 

since it represents a statement about conservation of energy 

  ( ) ( ) ( )S R Lv t v t v t   

Note: the addition of voltages is a “vector” addition where the 

phase also needs to be considered.  
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Transient Response of RL Circuits:  

 

We can investigate the response of the circuit to three step 
function emfs. 

    

An inductor resists changes in current LI  through it. When the 

current LI  becomes constant, there is no potential difference 

across the inductor. An inductor has an effect only while the 

current is changing.  

 

When an emf is switched on in the series RL circuit, the current 

in the circuit iL increases from zero to a constant IL value as 

given by equation 1 

 (1)  /
1 /

t

L Li I e L R
 

     

The term /L R   is called the time constant and has units of 

time. After a time interval ~ 5t   the current is within 1% of its 

final constant value IL. In a time of one time constant 

 /t L R  , the current rises to 0.6321 LI . 
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When there is constant current and then the switch in the circuit 

is open, the current falls exponentially with time as given by 

equation 2 

 (2)  /
/

t

L Li I e L R
 

   

In a time of one time constant  /t L R  , the current drops 

to 0.3679 LI  and after a time interval of ~ 5t  , the current is 

less than 1% of its initial value. 

 

 

Simulation 1   Source emf: step function (OFF/ON) 

The response of a series RL circuit to closing a switch to connect 

the series resistor and inductor to the emf source is modelled in 

Simulation 1. 

Figure 2 shows the time variation of the voltage source and the 

voltages across the resistor and inductor. At any instant 

( ) ( ) ( )S R Lv t v t v t  . 

Figure 3 shows the time variation in the current. After a time 

interval of 5  a steady current flows through the circuit. 

      

   3 3 5
/ 10.0 10 / 1.00 10 s 1.00 10 s 0.010 msL R  

        

There is excellent agreement between the analytical predictions 

and the results of the numerical modelling of the circuit. 
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Fig. 2. The time evolution of the source emf, voltage 

across the resistor and the voltage across the inductor. 
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Fig. 3.  The current verses time in the series LR circuit. 

The plot clearly shows how the inductor resists changes 

in the current it, because it requires a time t  for the 

current to change by Li .  

 

The values of R and L can be easily changed in the script 

CNRL.m to show the dependence of the transient response 

to the time constant /L R  . The Matlab Data Cursor tool 

can be used to measure the time constant   in the voltage 

and current plots. 
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Energy must be conserved in the circuit response to a source emf 

(figures 4 and 5). The source provides energy to the circuit. A 

current through a resistance results in energy being dissipated as 

thermal energy which results in an increase in temperature.  For 

the inductor, energy is stored in the magnetic field surrounding 

the inductor. Hence,  

 ( ) ( ) ( )S R Lp t p t p t         ( ) ( ) ( )S R LE t E t E t   

At time t = 0.020 ms 

 0.0633 W 0.0401 W 0.02332 WS R Lp p p     

There is an initial peak in the power curve for the inductor. This 

occurs because     ( ) Re ( ) Re ( )L L Lp t v t i t  

So, when the switch is closed ( )Lv t  is a maximum and ( ) 0Li t  , 

then vL decreases to zero while iL increases to IL. 

At time t = 0.080 ms  

        6.0039 μJ 5.5051 μJ 0.4988 μJS R Lu u u     

The magnetic energy stored by an inductor is  

 21
2L LU Li  

At time t = 0.080 ms, 0.010 AL Si i   and the magnetic energy 

is    
22 71 1

2 2
0.01 0.010 J 5.00 10 JL LU Li


     which agrees 

with the numerical prediction.  
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Fig. 4.   Power changes in the series RL circuit. Note: 

difference Y scales for pL. 
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Fig. 5.   Energy changes in the series RL circuit. Note:  

difference Y scales for uL. 
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Simulation 2   Source emf: step function (ON/OFF) 

The source emf is a step function ON/OFF. 

 

Fig. 6. The current in the circuit decreases exponentially 

when the source emf is switched off. The time constant 

is 0.010 ms  .  
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Fig. 7. The time evolution of the source emf, voltage 

across the resistor and the voltage across the inductor. 
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 Fig. 8.   Power changes in the series RL circuit. Note: 

difference Y scales for pL. 
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Fig. 9.   Energy changes in the series RL circuit. Note:  

difference Y scales for uL. 
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When the source emf is switched on, the current in the circuit is 

constant and energy is stored in the magnetic field of the coil of 

the inductor. When the source emf is switched off, the current 

drops to zero and energy is dissipated in the resistance. The 

energy dissipated in the resistance is equal to the energy 

supplied by the source emf and the energy returned to the 

circuit from the energy that was stored in the magnetic field 

(figure 9). 

     0.50 μJ 1.00 μJ 0.50 μJS R L R S Lu u u u u u      

Analytically, the energy stored in the magnetic field is 

   
22 71 1

2 2
0.01 0.010 J 5.00 10 JL LU Li


     

which agrees with the prediction from our model using the finite 

difference method. 
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Simulation 3   Source emf: square wave function 

 

Fig. 10. The current as a function of time for a square 

wave source emf as shown in figure 11. 

The square wave function is periodic. The voltage across the 

inductor has its largest change when the voltage suddenly 

increases or decreases. When the voltage of the square wave 

switches from 0 to +10 V or from +10 V to 0 V, the current is 

forced to “try” to prevent it from changing as the inductor 

opposes this change (Lenz’s Law. When the source emf is switch 

on – the induced voltage across the inductor increases in a 

positive sense to reduce the current. When the source emf is 

switch off – the induced voltage across the inductor increases in 

a negative sense to increase the current (figure 11).   
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Fig. 11. The time evolution of the source emf, voltage 

across the resistor and the voltage across the inductor. 
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Fig. 12. The time evolution of the powers for the source 

emf, the resistor and the inductor. 
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Fig. 13. The time evolution of the energies for the 

source emf, the resistor and the inductor. 
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Simulation 4   Source emf: Sinusoidal Function 

We can model the RL circuit by calculating the response of the 

circuit to a sinusoidal source (input) voltage. In the switch/case 

statements, FlagV = 4 gives the calculation for the sinusoidal 

source emf. The frequency of the source is set within this 

segment of the code.  

case 4     % sinusoidal input 
       fS = 10e3; 
       w = 2*pi*fS; 
       T = 1/fS; 
       nT = 8;  
       tMax = nT*T; 
       t = 0:dt:tMax; 
       N = length(t); 
       vS = VS .* exp(1j*(w*t - pi/2)); 

 

The complex sinusoidal function used for the source emf is 

         vS = VS .* exp(1j*(w*t - pi/2)); 

 

It is better to use complex functions for some of the variable, 

because the complex function contains information of both the 

magnitude and phase of the variable. The real part of a complex 

function gives its actual value. The actual emf that is used is a 

sine function  ( ) sin( )S Sv t V t . 

This is an example of a driven oscillator. The voltages and current 

will oscillate at the driving frequency of the source.   
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A summary of the circuit parameters and calculations are 

displayed in a Figure Window. 

 

The phase of the voltages and current can be calculated from the 

impedances as shown in the above Table. The voltage across the 

resistor and the current are in phase  o
0R  . The voltage 

across the inductor leads the current by 90o  o
90L  . The 

source emf leads the current - the current reaches its peak value 

a later time than the voltage  o
32Z  . The phase predictions 

are confirmed using the numerical calculations where the phase 

is calculated using the Matlab complex function angle as shown 

in the Table. Study figures 14 and 15 and you will see why the 

source voltage leads the current. Also, at any time you will 

observed  

 ( ) ( ) ( )S R Lv t v t v t              “vector” like addition 
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Fig. 14.   The time evolution of the voltages. The 

frequency of the voltages across the resistor and 

inductor are the same as the driving frequency.  
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Fig. 15.   Plot of the real and imaginary parts of the 

source emf, the resistor voltage and the inductor 

voltage. The plot implies ( ) ( ) ( )S R Lv t v t v t  . The phase 

of the inductor voltage leads the current by 90o and the 

source emf leads the current by 32o. 
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Fig. 16.   The circuit current as a function of time. 
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Fig. 17. The powers as a function of time. For the 

sinusoidal source emf, the average power for the 

inductor is zero. 
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Fig. 18. The energies as a function of time.  
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Simulation 5     RL Filters 

                            Source emf: sinusoidal function 

 

The series RL voltage divider circuit can act as a filter circuit. For 

a low frequency source emf, the voltage across the inductor is 

small since the impedance of the inductor is small. Hence, the 

larger voltage will be across the resistor. On the other hand, for 

high frequencies, the impedance of the inductor is large and the 

higher voltage will be across the resistor. 

 Impedances   2R LZ R Z j L f      
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Fig. 19. The source emf frequency is 1.00 kHz. There is a 

low voltage across the inductor (low pass filter) and a 

high voltage across the resistor (high pass filter). 
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Fig. 19. The source emf frequency is 30.00 kHz. There is 

a high voltage across the inductor (high pass filter) and a 

low voltage across the resistor (low pass filter). 
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Simulation 6 

    Source emf: superposition of sinusoidal functions 

        vS = VS .* sin(w*t) + (0.5*VS) .* sin(10*w*t); 

 

The source emf is composed of a lower frequency sinusoidal 

signal and a higher frequency sinusoidal signal. The inductor 

opposes the changes in the current. Hence, the higher frequency 

component is more heavily attenuated than the lower frequency 

component. This has a smoothing effect on the current. So, the 

rapid fluctuations in the voltage across the resistor are reduced 

(figure 20). 
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Fig. 20. The inductor opposes changes in the current. 

The higher frequency component is more attenuated 

which results in a reduction in the rapid fluctuations in 

the voltage across the resistor. 


