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THE FINITE DIFFERENCE METHOD FOR THE NUMERICAL 

ANALYSIS OF SERIES RCL CIRCUITS 

 

Ian Cooper 

Please email any corrections, comments, suggestions or 

additions:   matlabvisualphysics@gmail.com 

Matlab Download Directory 

 

CNsRCL.m 

Computation of voltages, current, and energies for series RCL 

circuits using the finite difference method. The Matlab function 

findpeaks is used to estimate frequencies (periods) and phases. 

 
 
An interesting circuit is obtained by connecting a resistor, 

capacitor and inductor in series with a source (input) emf 

(figure 1). The behaviour of the circuit is like an object at the end 

of a spring -  it oscillates. There is a continual exchange of energy 

between the energy source and the energies stored in the 

capacitor and inductor. In a mechanical system, an object 

oscillates back and forth around an equilibrium position. In the 

electrical circuit, it is the charge that oscillates. The oscillating 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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charge produces an alternating current and alternating voltage 

drops across the resistor, capacitor and inductor. The frequency 

of the oscillation depends only upon the values of the 

capacitance C and inductance L. This natural frequency f0 

(resonance frequency) is given by 

 (1) 0

1

2
f

LC
  

The response of the series RCL circuit is that of a damped 

harmonic oscillator. The damping being dependent upon the 

resistance R. The greater the value of the resistance, the greater 

the damping effect. 
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Fig. 1.   Series RCL circuit which can be modelled using 

the finite difference method. 

 

The response of the series RCL circuit can be computed by using 

Kirchhoff’s Voltage and Current Laws and approximating the 

voltage across the capacitor and current through the inductor 

using the finite difference method. 

 

The script CNsRCL.m is used to model the series RCL circuit. In 

the script, the first letter of a variable that is a function of time or 
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a complex variable is a lowercase letter. A variable that start with 

an uppercase letter is independent of time or a real quantity. For 

example, vS is the variable for the input emf and is calculated at 

each time step, whereas the variable VS is the peak value of the 

source emf. 

 

A step function (OFF/ON) or a complex sinusoidal function can 

be selected as the source emf using the variable flagV (flagV = 1 

for a step function or flagV = 2 for a sinusoidal function). The 

source emf can be changed within the switch/case script. The 

time scales for a simulation are also set within the switch/case 

script. 

The complex sinusoidal function is used for the source emf is 

 vS = VS .* exp(1j*(w*t - pi/2)); 

 

It is better to use complex functions for some of the variable, 

because the complex function contains information of both the 

magnitude and phase of the variable. The real part of a complex 

function gives its actual value. The actual emf that is used is a 

sine function because we assume the capacitor is initially 

uncharged 

 (2) ( ) sin( )S Sv t V t  
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To start the computational procedure, the initial conditions must 

be specified at time step #1. 

%  Time Step #1 

   vR(1)  = vS(1); 

   vC(1)  = 0;             

   vL(1) = vS(1) - vR(1) - vC(1); 

   iS(1) = vR(1) / R; 

   iS(1) = iS(1) + vL(1) * dt / L; 

   vC(1) = vC(1) + iS(1) * dt / C; 

   vR(1) = iS(1) * R; 

   vL(1) = vS(1) - vR(1) - vC(1); 

 

The values of the voltage and current parameters are calculated 

by implementing the finite difference method. Note: the voltage 

across the capacitor uses an average value of the current over 

two time steps to improve the accuracy of the numerical 

approximation (half-step method). 

% Time Steps #2 to #N 

 for c = 2 : N 

  iS(c) = iS(c-1) + vL(c-1) * dt/L; 

  vR(c) = iS(c) * R; 

  vC(c) = vC(c-1) + 0.5*(iS(c)+iS(c-1)) * dt / C; 

  vL(c) = vS(c) - vR(c) - vC(c); 

 end 
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For accurate results, the time interval dt should be chosen so 

that it is much smaller the period of the natural oscillation  

 (3) 2dt LC  

% Resonance Frequency f0, period T, time step dt 

   f0 = 1/(2*pi*sqrt(L*C)); 

   T0 = 1/f0; 

   dt = T0 /1000; 

 

From the values of R, C and L, the impedances Z of the circuit 

elements for the sinusoidal source emf are calculated as shown 

in the Table. 

% Impedance calculations   

       XC = 1/(w*C); ZC = -1j*XC; 

       XL = w*L;     ZL = 1j*XL; 

                     ZR = R; 

       Z = ZR + ZC + ZL; 

 

Energy is dissipated by a current through the resistor and energy 

is stored in the electric field of the capacitor plates, and stored in 

the magnetic field surrounding the coil of the inductor. The 

power ( )p t  and energy ( )u t  as functions of time t can easily be 

computed. 

% Powers and energy 

   pS = real(vS) .* real(iS); 

   pR = real(vR) .* real(iS); 

   pC = real(vC) .* real(iS); 

   pL = real(vL) .* real(iS); 



7 

 

      

   uS = zeros(1,N); uR = zeros(1,N); 

   uC = zeros(1,N); uL = zeros(1,N); 

   for c = 2 : N 

       uS(c) = uS(c-1) + pS(c)*dt; 

       uR(c) = uR(c-1) + pR(c)*dt; 

       uC(c) = uC(c-1) + pC(c)*dt; 

       uL(c) = uL(c-1) + pL(c)*dt; 

   end 

 

Our series RCL circuit is complicated. We can not simply add the 

voltages across the resistor, capacitor and inductor because of 

the phase differences between these voltages. However, in the 

modelling, we use a complex exponential function to simulate a 

real sine function source voltage. The computed values for the 

circuit current and voltages are all computed as complex 

functions. So, these complex functions contain information of 

the magnitudes and phases. The script below shows the 

calculation of the phases at a time step given by the variable nP. 

By changing the value of nP, you can see the phases at different 

times. 

% Phases voltage: phi and current theta  at time 

step nP  [degrees] 

    nP = N-500; 

     

    phiS   = rad2deg(angle(vS(nP))); 

    phiR   = rad2deg(angle(vR(nP))); 

    phiC   = rad2deg(angle(vC(nP))); 

    phiL   = rad2deg(angle(vL(nP))); 
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    thetaS = rad2deg(angle(iS(nP))); 

    phiSR = phiS - phiR; 

 

 

The response of the circuit may result in oscillations. The period 

TPeaks of the oscillation can be approximated by finding the time 

intervals between peaks using the Matlab function findpeaks as 

shown in the code in the Table. 

% Find peaks in vS and corresponding times 

%   Calculate period of oscillations 

%   May need to change number of peaks for 

    estimate of period: nPeaks 

    [iS_Peaks, t_Peaks] = findpeaks(real(iS)); 

    nPeaks = 3; 

    T_Peaks = (t(t_Peaks(end))- t(t_Peaks(end-

nPeaks)))/(nPeaks); 

    f_Peaks = 1 / T_Peaks; 

 

If no peaks are found, you may get an error message. If this 

happens, simply set the statements to comments using % and set 

f_Peaks = 0 and T_peaks = 0.   

 

 A summary of the input and calculated parameters is displayed 

in the Command Window. The results of the modelling are 

displayed graphically in a series of plots as shown in the 

following simulations. 
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RESPONSE TO A STEP FUNCTION OFF / ON 

 

The response of the RCL circuit is like that of a mass at the end of 

a string. 

Natural frequency for the series RCL is 

 (1) 0

1

2
f

LC
  

Natural frequency of oscillation of mass / spring system is 

  
0

1

2 /
f

m k
  

In this analogy 

  1/L m C k R b     

where b is the damping coefficient of the velocity term in the 

equation of motion of the mass on a spring. 

 

When an object attached to a spring is disturbed, is motion can 

often be classified as underdamped, critically damped or 

overdamped. Critical damping provides the quickest approach to 

zero amplitude for a damped oscillator. With less damping 

(underdamping) it reaches the zero position more quickly, but 

oscillates around it. With more damping (overdamping), the 

approach to zero is slower. For our series RCL circuit, the 

damping is determined by the value of the resistance. 
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The critical damping resistance is given by 

  2critical

L
R

C
  

When criticalR R  the system is underdamped and when 

criticalR R  the system is overdamped. 

 

When there is underdamping  criticalR R , the system vibrates 

at its natural frequency until the oscillations die away. Any 

sudden changes in the source emf may produce a ringing effect, 

where the current oscillates at the resonant (natural) frequency 

determined by the values of C and L as given by equation 1. The 

amplitude of the current dies away exponentially. 
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Simulation 1:  

 Step Function OFF / ON source emf  

 Underdamping    10 237criticalR R     

Circuit parameters and numerical results are displayed in the 

Command Window 

 Resistance   R  =  1.00e+01  ohms   

 Capacitance  C  =  1.000e-06  F   

 Inductance   L  =  1.400e-02  H   

 Source emf: step Function OFF/ON 

 Peak emf    VS  =  1.00e+01  V   

 Resonance Frequency f0   =  1.345e+03  Hz  

 Resonance Period     T0  =  7.434e-04  s   

 time increment      dt   = 7.434e-07   s   

                 dt / T   =  1.00e-03     

  Frequency of peaks f_Peaks  =  1.344e+03  Hz  

 Period of peaks    T_Peaks  =  7.439e-04  s   

 

 

Figure 2 shows the plots of the current as a function of time for 

two underdamped systems. When the resistance R is increased 

from R = 10 Ω to R = 40 Ω, the oscillations die away more quickly 

due to the increase in damping. Figure 3 shows the voltages 

across the resistor, capacitor and inductor.  
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The natural frequency 0f  of the oscillation calculated from 

equation 1 is 

 0 1345 Hzf   

 

The value of the natural frequency peaksf  from the model using 

the findpeaks function is 

 1344 Hzsf   

So, we have excellent agreement between the two values. 
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Fig.2.   The ringing effect of the step function source 
emf. The oscillations die way exponentially. The larger 
the resistance R, the more rapidly the oscillations 
decrease. 
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Fig. 3.  The voltages as function of time. The ringing 

effect is very noticeable from the plots.  The blue curves 

represents the source emf.  
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We can see clearly from figure 3 that there is a   rad phase 

difference between for the voltage across the capacitor and the 

voltage across the inductor (a peak in vC corresponds to a trough 

in vL). Through careful examination of figure 3, we can state that 

     sin sin / 2 sin / 2R R C C L Lv V v V v V          

Hence, we can conclude, The voltage across the capacitor lags 

the voltage across the resistor by / 2  rad; the voltage across 

the inductor leads the voltage across the resistor by / 2  rad; 

and the voltage across the inductor leads the voltage across the 

capacitor by   rad. 

 

We can also get the phase values from the Command Window 

using the findpeaks command. The findpeaks command is used 

to find the indies for the times of the least peak in the voltages. 

[a b] = findpeaks(real(vR))  → 

 a =  0.7942    0.6149    0.4761    0.3686    0.2854 

 b = 782        1782        2783        3784        4784 

The times for the last peaks are 

 resistor      t(4784) = 3.5559  ms 

 capacitor   t(5041) = 3.7469  ms 

        inductor    t(4527) = 3.3648  ms 
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We can calculate the period from the values of b given from the 

findpeaks function 

 period T = ( t(4784) -t(1782) ) /3     (time between 3 peaks) 

       T = 0.7439  ms 

We can now find the phases by comparing the time difference 

between peaks and the period and expressing the phase angle in 

degrees. 

Phase difference between vC and vR 

  
o

o3.7469 3.5559
360 92

0.7439
C

 
  

 
 

 Phase difference between vL and vR 

  
o

o3.3648 3.5559
360 92

0.7439
L

 
   

 
 

Phase difference between vL and vC 

  o o o
92 92 184LC       
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Figures 4 and 5 shows the exchanges of energy occurring in the 

circuit as functions of time. The emf source provides energy to 

the circuit. When a current passes through the resistance, energy 

is absorbed and dissipated as thermal energy resulting in an 

increase in temperature of the resistor. The capacitor stores 

energy as it charges and supplies energy to the circuit as it 

discharges. For our step function emf input voltage, after the 

oscillations die away, the capacitor becomes fully charged and 

stores energy since the capacitor acts like an open circuit, the 

current falls to zero. The inductor stores in the magnetic 

surrounding the coil energy as the current through it increases. 

When the current finally drops to zero, the inductor no longer 

stores or supplies energy to the circuit. For the power curves as 

functions of time, when the power is positive, energy is either 

dissipated or stored. When the power is negative, the stored 

energy is returned to the circuit.  
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Fig. 4. The power absorbed or supplied by the circuit 

elements. The blue curves represent the source emf. 
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     Fig. 5.   The energy exchanges in the circuit. 
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The power is the rate of energy transfer 

 (4) 
( )

( )
du t

p t
dt

  

If you “mentally” differentiate an energy plot w.r.t. time you get 

the power plot as a function of time. For example, in figure 5, the 

first peak in the energy plot for the capacitor occurs at the time 

t = 0.74149 ms. At this time, the power pC is zero. 

 

It is very easy to change any of the parameters in the script, and 

see immediately, how the response of the circuit changes. For 

example, figure 6 shows the response when the capacitor value 

is decreased by a factor of 9. The natural frequency is now 

4035 Hz. 

    0 0 0/ 9 1 / 3 (3)(1345) 4035C C f C f f      
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Fig. 6. A decrease in capacitance C results in higher 

frequency oscillations.  
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Simulation 2:  

 Step Function OFF / ON source emf  

 Underdamping / Critical damping / overdamping 

       237criticalR    

 

The following figures shows the changes in the damping of the 

voltages as the resistance of the circuit is increased. 
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 Fig. 7.   Underdamped oscillations. 
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 Fig. 8.  Heavily underdamped damped oscillations. 
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 Fig. 10.   Critically damped signals – no oscillations. In the 

script need to comment the lines for findpeaks.  



26 

 

  

Fig. 10.   Overdamped signals – no oscillations. In the 

script need to comment the lines for findpeaks.  
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 RESPONSE TO A SINUSOIDAL SOURCE VOLTAGE  

A mechanical oscillator will vibrate at the driving frequency. As 

the driving frequency approaches the natural frequency of 

vibration of the system, the amplitude of the oscillation can be 

become very large. This phenomenon is called resonance.  

Resonance occurs in a series RCL circuit. The current in the circuit 

oscillates at the same frequency as the sinusoidal source emf. 

When the source emf frequency matches the natural frequency 

as given by equation 1, the amplitude of the oscillation is a 

maximum for a given amplitude of the source emf.  

 

Simulation 3:   Sinusoidal source emf  

Figure 11 shows two plots, one where the source frequency is 

equal to the natural frequency  0 1000 HzSf f  and the 

second plot, the source frequency higher than the natural 

frequency  1500 HzSf  . 

Warning: It always takes a few cycles before the current (or 

voltages) to vary sinusoidally with a constant amplitude (peak 

value).  The amplitudes of the sinusoidal current oscillations are:

0 1000 Hz 249 mA 1500 Hz 74 mAS S S Sf f I f I    
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At resonance the total circuit impedance is equal to the 

resistance. The effects of the capacitor and inductor cancel each 

other. So, the current in the circuit is

 
10

A 0.25 A = 250 mA
40

S
S

V
I

R
  
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Fig. 11.   The current in the circuit is a maximum when 

driven at the resonance frequency.  

  



30 

 

Figures 12 shows the voltage plots when the frequency of the 

complex exponential function is equal to the natural frequency 

 0 1000 HzSf f  . After a few cycles, the effects of the 

capacitor and inductor cancel. The magnitudes of the voltage 

across the capacitor is equal to the magnitudes of the voltages 

across the inductor but they are  rad (180o) out of phase

 ( ) ( ) 0C Lv t v t  . So, the voltage across the resistor is identical 

to the source emf  ( ) ( )S Rv t v t . 

 

It is better to use a complex exponential function rather than the 

sine function for the source emf as we can extract both the 

magnitude and phase from it. This means that we can compare 

the phases across the resistor, capacitor, inductor and current 

with the phase of the source emf. Figure 9 shows the phasor 

diagram when 0 1000 HzSf f  for the voltages at one instant 

when t = 9.50 ms and at a slightly later time t = 9.70 ms. The 

voltage of the source emf is in phase with voltage across the 

resistor at resonance. 
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Fig. 12.  The voltages as a function of time when the 

source frequency is equal to the natural frequency.     

0 1000 HzSf f    
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Fig. 13.   Phasor diagram for the voltages at times 

t = 9.50  ms and time t = 9.70 ms. Each phasor rotates 

anticlockwise with angular velocity 2 f  . 
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Remember, you cannot add ac voltages as simple numbers, they 

must be added like vector quantities. We can verify this in the 

Command Window by displaying the voltage and current values. 

You can compare the numerical results in the Table with the 

phasors in figure 13. 

t(9700) = 0.0097 

vS(9700) =  -9.4910 + 3.1499i 

vR(9700) = -9.6073 + 3.1895i 

vC(9700) = 12.6747 +38.2413i 

vL(9700) = -12.5583 -38.2810i 

vR(9700)+vC(9700)+vL(9700) =-9.4910 + 3.1499i 

iS(9700) = -0.2402 + 0.0797i 

rad2deg(angle(vS(9700))) =  161.6400 

rad2deg(angle(vR(9700))) = 161.6343 

rad2deg(angle(vC(9700))) = 71.6628 

rad2deg(angle(vL(9700))) = -108.1624 

rad2deg(angle(vL(9700))) = 161.6343 

rad2deg(angle(iR(9700))) = 161.6343 
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The circuit impedances are calculated within the script and 

displayed in the Command Window. 

Sinusoidal Source emf 

  Source frequency  fS  =  1.00e+03  Hz   

  Impedance: resistance   ZR  =  4.00e+01  ohms   

  Impedance: capacitance   ZC  =  0.000e+00 -1.592e+02 ohms   

    capacitance phase angle    phiC  =  -90.0 deg   

  Impedance: inductance   ZL  =  0.000e+00 1.592e+02 ohms   

    inductance phase angle    phiL   =  90.0 deg   

  Impedance: total        Z   =  4.00e+01 -2.81e-12 ohms   

  Impedance: magnitude    |Z| =  4.00e+01   ohms   

    impedance phase angle phiZ      =  -0.00 deg    

 

The impedance of the capacitor is equal in magnitude of the 

impedance of the inductor and 180o out of phase at the 

resonance frequency. So, the total impedance is equal to the 

resistance value and the phase of the circuit impedance is zero. 

The impedances given in the above Table were calculated from 

the equations 

 (5) 
/R C L

R C L

Z R Z j C Z j C

Z Z Z Z

    

  
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The impedance is defined as the ratio of the voltage to the 

current.  

 (6) 
( )

( )

v t
Z

i t
              Z is independent of time 

 

We can calculate the values of the impedances in the Command 

Window using equation 6 at any time step and compare the 

values with the values given from relationships given in 

equation 5. 

           t(9700) = 0.0097 

ZR       abs(vR(9700)/iS(9700) = 40.0000 

ZC       abs(vC(end)/iS(end)) = 159.1907 

ZL       abs(vL(end)/iS(end)) = 159.1956 

Z        abs(vS(end)/iS(end)) = 39.5141 

 

Figure 14 shows the phase plots (I vs V plot). The phase plot for 

the resistor is a straight line. The straight line indicates that the 

voltage and current for the resistor are in phase. The reciprocal 

of the slope of the line is equal to the value of the resistance. 
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Fig .14.  Phase plots showing how the current and voltage change 

with time. 
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The phase plots for the capacitor and inductor show that there is 

a 90o ( / 2  rad) phase difference between the voltage and 

current. The phase plots are ellipses – when the currents are 

zero, the voltages are a maximum and when the voltages are 

zero, the current are a maximum. For the capacitor phase plot, 

the path of the curve evolves in a clockwise direction which 

implies that the voltage lags the current. However, in the 

inductor phase plot the path of the curve evolves in an 

anticlockwise direction which implies that the voltage leads the 

current. 

 

Figures 15 and 16 show the power and energy absorbed by the 

circuit elements plots as functions of time.  The power ( )Rp t

absorbed by the resistance is always positive which means that 

energy is dissipated by the resistance as thermal energy.  For the 

capacitor and inductor, the time average powers ( )Cp t  and 

( )Lp t  are both equal to zero. No energy is dissipated in our ideal 

capacitor or inductor. Energy is stored by the capacitor or 

inductor when the instantaneous power is positive and returned 

to the circuit when the instantaneous power is negative. 
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Fig. 15.   Power absorbed or supplied in the series RCL 

circuit at resonance 0 1000 HzSf f  .   
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Fig. 16.   Energy absorbed or supplied in the series RCL 

circuit at resonance 0 1000 HzSf f  .      
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We can examine the response of the circuit for a sinusoidal 

source emf at a frequency above the resonance frequency 

01500 Hz 1000 HzSf f   . 

 

Comparing figures 12 and 17 for the voltages as functions of 

time, there is a greater voltage across each element when the 

source frequency is equal to the resonance frequency. At 

resonance there is maximum current in the circuit (figure 8). 

 

Element 0 1000 HzSf f   1500 HzSf   

resistor     RpeakV   10.0 V 2.9 V 

capacitor  CpeakV  40.3 V 7.7 V 

inductor   LpeakV  40.3 V 17.2 V 
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 Fig. 17.  The voltages as a function of time when the 

source frequency is greater than the natural frequency.     

  01500 Hz 1000 HzSf f     
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The voltage across the resistor and the current through it are out 

of phase when the source frequency is not equal to the 

resonance frequency. Figure 18 shows the phasor diagram at 

time t = 9.50 ms. The capacitor and inductor voltages are still 

180o out of phase but the voltages have different magnitudes 

and so the effects of the capacitor and inductor do not cancel. 

Phases [degrees] at time t = 9.50 ms   

 phiS   =  -0 deg            phiR   = -74 deg   

 phiC   = -164 deg        phiL   =  17 deg   

 Phase difference between source emf & current 

    thetaSR  =  74 deg   

 

Fig. 18.   Phasor diagram for the voltages at time t = 9.50 

ms. The source emf leads the current by 74o. 


