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DOING PHYSICS WITH MATLAB 

CIRCUIT ANALYSIS 

DC CIRCUITS 

Ian Cooper 

Please email any corrections, comments, suggestions or 

additions:   matlabvisualphysics@gmail.com 

Matlab Download Directory 

CR001.m     CR002.m   CWR.m   CWBT.m 

 

 

DC circuits can be analysed in more detail and without doing lots 

of algebra using Matlab as a tool. This is done by using mesh grid 

equation method (Maxwell’s method). 

 

  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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Mesh Equation Method or Maxwell’s Method 

1. Pick closed loops called mesh (or loop) currents. 

2. Apply Kirchhoff’s Voltage Law to each loop, being careful 

with your sign convention to derive a set of simultaneous 

equations. 

3. Use Matlab to solve the simultaneous equations to find 

the find loop currents and then the current through each 

component, the potential difference across each 

component and the power dissipated by each component. 

 

Voltage Divider Circuit 

One of the most important simple circuits is the voltage divider 

circuit.  Voltage dividers find wide application in electric meter 

circuits, where specific combinations of series resistors are used 

to “divide” a voltage into precise proportions as part of a voltage 

measurement device. Also, voltage dividers are found in timing 

and amplifier circuits.   

 

We will consider a simple voltage divider circuit with resistive 

components in which energy is transferred from a source to a 

load as shown in figure 1. 
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 Fig. 1.    Voltage divider circuit. 

 

Each resistor is numbered 1, 2, 3 and 4. Resistor 
1

R  corresponds 

to the internal resistance (
int

R ) of the source with emf    which 

has a constant value. The load the resistance 
load

R  corresponds to 

the resistor 
4

R . 

 

The current though each resistor, the potential difference across 

each resistor and the power dissipated by each resistor are given 

by  1, 2, 3, 4
X X X

I V P X    respectively. The loop currents are 

1L
I  and 

2L
I  as shown in figure 2. 
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 Fig. 2.   Labelled voltage divider circuit. 

 

Applying Kirchhoff’s voltage Law to loops (1) and (2), we can 

derive the two simultaneous equations 

 (1) 
 

 

1 2 3 1 3 2

3 1 3 4 2
0

L L

L L

R R R I R I

R I R R I

   

  
 

which can be solved using Matlab. Equation 1 can be written in 

matrix form 

  
M m m

R I = V  

where the matrices are 

 11 12

m 11 1 2 3 12 3 21 3 22 3 4

21 22

R
R R

R R R R R R R R R R R
R R

 
          
 

 

 1

M M

2

I
0

L

L

I
V

I

   
    

  
 

In terms of Matlab variables, the loop current matrix can be 

found using the following command 
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 Im = Rm \ Vm; 

 

The other unknown parameters are computed using the Matlab 

statements 

  IR(1) = Im(1); 

  IR(2) = Im(1); 

  IR(3) = Im(1)- Im(2); 

  IR(4) = Im(2); 

   

  V = IR .* R; 

  P = IR.^2 .* R; 

 

The script CR001.m can be used in modelling the voltage divider 

circuit. The emf and resistor values are set within the script and 

the results of the computation are displayed in a table in the 

Command window. 

Table 1.  Simulation results   
int

0 400
Load

R R     

  emf =  10.00  V  

 R [ohms]   IR [mA]    V [V]      P [mW] 

    0             42.86       0.000       0.00 

  100           42.86       4.286      183.67 

  200           28.57       5.714      163.27 

  400           14.29       5.714       81.63 

So, once you have the script, you only need to change the input 

parameters to model all simple voltage divider circuits. For 
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example, Table 2 shows displays the results when the internal 

resistance of the source is 20   . 

Table 2.  Simulation results   
int

20 400
Load

R R     

    emf =  10.00  V  

R [ohms]   IR [mA]    V [V]      P [mW] 

   20           39.47      0.789      31.16 

  100         39.47      3.947      155.82 

  200         26.32      5.263      138.50 

  400         13.16      5.263      69.25 

 

Comparing Tables 1 and 2, you notice the terminal voltage 

(potential difference across circuit) drops by 0.789 V and the 

power delivered to the load drops by 12.38 mW. 
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Voltage divider circuit: Maximum power delivered to load 

Consider a voltage divider circuit with a variable load resistance. 

An important thing to know is the value of the load resistance for 

maximum energy to be transferred from the source to the load. 

Achieving this goal of maximum energy transferred to as 

impedance matching.  

 

We will model the voltage divider circuit shown in figure 3 to find 

the value of the load resistance  4load
R R to achieve maximum 

energy transfer from source to load. 

 

 

 Fig. 3.   Voltage divider circuit with a variable load. 
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The script CR002.m can be used to model a voltage divider circuit 

to find the maximum load.  The input parameters are changed 

within the script. 

% INPUTS ================================= 

% source emf   

    emf = 10; 

% Resistance values R1   R2    R3   R4    

    R = [0 100 200 400]; 

% Load resistance R4 = Rload 

    RLmin = 10;         

    RLmax = 1000; 

    N = 5000; 

 

The results for the power dissipated by the load is displayed in a 

Figure Window (figure 4). 

 

  Fig. 4.   Power dissipated by a variable load resistance. 
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The maximum power and the corresponding load resistance is 

displayed in the Command Window, as well as, the theoretical 

value of the load resistance for maximum energy transfer. 

 PLmax = 0.1667 

         RLmax = 66.6393 

         RLtheory = 66.6667 

 

The value of the load resistance for maximum power transfer is 

found without doing lots of algebraic manipulations to find the 

results. 

        https://en.wikipedia.org/wiki/Maximum_power_transfer_theorem 

 

The Matlab statements for the calculations are: 

   PLmax = max(PLoad) 

   RLmax = RLoad(PLoad == PLmax) 

   RLtheory = R(2)*R(3)/(R(2)+R(3) 

 

 

  

https://en.wikipedia.org/wiki/Maximum_power_transfer_theorem
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The plot for the load power can be zoom-in and the data cursor 

used to find the maximum power and the corresponding load 

resistance as shown in figure 5. 

 

 Fig. 5.   Power dissipated by a variable load resistance with 

the expanded view of the peak. 
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The Wheatstone Bridge 

The Wheatstone Bridge was originally developed by Charles 

Wheatstone to measure unknown resistance values and as a 

means of calibrating measuring instruments, voltmeters, 

ammeters, etc, by the use of a long resistive slide wire. Although 

today, digital multimeters provide the simplest way to measure a 

resistance. The Wheatstone Bridge can still be used to measure 

very low values of resistances down in the milli-ohms range. 

 

The Wheatstone bridge (or resistance bridge) circuit can be used 

in a number of applications and today, with modern operational 

amplifiers we can use the Wheatstone Bridge circuit to interface 

various transducers and sensors to these amplifier circuits. 

 

The Wheatstone Bridge circuit is nothing more than two simple 

series-parallel arrangements of resistances connected between a 

voltage supply terminal and ground producing zero voltage 

difference between the two parallel branches when balanced. A 

Wheatstone bridge circuit has two input terminals and two 

output terminals consisting of four resistors configured in a 

diamond-like arrangement as shown in figure 6.  Figure 6 shows 

the labels for the resistors and the loop currents. The resistance 
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5
R  could of the resistance of a galvanometer or a voltmeter 

connected between the arms of the bridge. 

 

 

 

 

 Fig. 6.   Wheatstone Bridge circuit drawn as a diamond which 

shows the loop currents and currents through each resistor. 
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There are two basic modes of bridge operation.  In one mode, 

the bridge can be used to determine the value of an unknown 

resistance to a high degree of accuracy by comparing it with an 

accurately known resistance. The value of the unknown 

resistance is measured by varying the resistance of one of three 

other resistors in the bridge circuit to obtain a balanced 

condition in which the bridge has zero output voltage, that is, a 

voltage “null”. In the other mode, the bridge is in an unbalanced 

state and the value of an unknown resistance is determined from 

the value of the bridge output voltage.  This is sometimes 

referred to an “off-null” operation.  If a resistance type 

transducer, for example a thermistor, light dependent resistor or 

a strain gauge is used as the unknown resistance, then the bridge 

output will depend on the transducer resistance. The output 

voltage can be calibrated directly in terms of the measured 

variable (temperature, light, expansion, …). 

 

One of the key components of a weighing system is an 

instrument called a strain gauge which is often used to measure 

small amounts of deformation.  It consists of a series of parallel, 

high resistance wire or foil elements and is mounted on a 

smooth surface.  This strain gauge is then mounted on a metal 

beam that has a bucket hanging from it and it forms one of the 

arms of a Wheatstone bridge.   
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From figure 6, it is an easy task to applying Kirchhoff’s Voltage 

Law to loops (1), (2) and (3) and derive three simultaneous 

equations 

 (2) 

 

 

 

1 2 1 1 2 2 3

1 1 1 3 5 2 5 3

2 1 5 2 5 4 2 3

0

0

L L L

L L L

L L L

R R I R I R I

R I R R R I R I

R I R I R R R I

   

    

    

 

which can be solved using Matlab. Equation 2 can be written in 

matrix form 

  
M m m

R I = V  

where the matrices are 

 

 

 

11 12

m

21 22

11 1 2 12 1 13 2

21 1 22 1 3 4 23 5

31 2 32 5 33 5 4 2

R
R R

R R

R R R R R R R

R R R R R R R R

R R R R R R R R

 
  
 

     

     

     
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1

M 2 M

3

I 0

0

L

L

L

I

I V

I

   
   

 
   

  
  

 

The other unknown parameters are computed using the Matlab 

statements 

  IR(1) = Im(1) - Im(2); 

  IR(2) = Im(1) - Im(3); 

  IR(3) = Im(2); 

  IR(4) = Im(3); 

  IR(5) = Im(3) - Im(2); 

   

  V = IR .* R; 

  P = IR.^2 .* R; 

 

 

The text University Physics by Young and Freedman has a 

problem on the Wheatstone Bridge. The values of three resistors 

and emf were given as 

 
1 2 3

13.0 15.00 850.0 33.48V R R R         

A galvanometer was placed across the bridge, so  
5

0R  . 

The problem was to find the value of 
4

R  so that the 

galvanometer current is zero. The script CWB.m can be used for 

the Wheatstone Bridge calculations given the emf and resistor 

values. 
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The value of 
4

R  can be adjusted by a trial error basis to find its 

value when 
5

0 AI  . The required value is 
4

1897R    for zero 

galvanometer current. 

 

Command Window display for the results of the calculation: 

   

emf =  13.00  V  

  IL1  [mA]    IL2  [mA]  IL3 [mA] 

  21.763       6.734       6.734         

   

 R [ohms]   IR [mA]    V [V]      P [mW] 

  15        15.029     0.225      3.39 

  850       15.029     12.775     191.99 

  33        6.734      0.225      1.52 

  1897      6.734      12.775     86.02 

    0       -0.000     -0.000     0.00 

T 

he Wheatstone bride is a very sensitive. For example,  

 4 5
1895 0.005 mAR I     
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The Young and Freedman text has a worked example on the 

Wheatstone Bridge.  The task is to find the current through each 

resistor and the equivalent resistance of the network of the five 

resistors given 

 
1 2 3 4 5

13.0

1.0 1.0 1.0 2.0 1.0

V

R R R R R

 

         
 

Using the script CWB.m it is an easy task to calculate all the 

required values. 

emf =  13.00  V  

  IL1  [mA]    IL2  [mA]  IL3 [mA] 

 11000.000    5000.000   4000.000         

   R [ohms]   IR [mA]    V [V]      P [mW] 

   1       6000.000      6.000     36000.00 

   1       7000.000      7.000     49000.00 

   1       5000.000      5.000     25000.00 

   2       4000.000      8.000     32000.00 

   1       1000.000      1.000     1000.00 

 

The total current through the network is the loop current 
1L

I  and 

the potential drop across the network is 13 V. Hence, the 

equivalent resistance of the network is 

 1

1

13
11A 13 V R 1.2

11
L eq

L

I
I


         
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We can model the operation of a transducer that was placed in 

the arm of the Wheatstone Bridge corresponding to 
4

R  and a 

voltmeter connected across the bridge, so 5

5
1.00 10R     (a 

voltmeter has a large internal resistance). The values of the fixed 

resistor are set to 100   and the emf is 10.0 V  . 

 1 2 3
100 100 100R R R       

The script CWBT.m was used to model the output voltage for a 

transducer with variable resistance placed in one arm of the 

Wheatstone Bridge. The output in shown in a Figure Window 

(figure 7). 

 

 Fig. 7.   The output voltage of a transducer as a function of 
the transducer resistance. The transducer has a linear 
response. The Wheatstone Bridge is balanced when the 
transducer resistance is 100  , as expected. 
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Fig. 7.   A transducer connected to one arm of a Wheatstone   

Bridge. 

 

  

  

 


