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When you change channels on your television set, an RLC circuit is used to 

select the required frequency. To watch only one channel, the circuit must 

respond only to a narrow frequency range (or frequency band) centred 

around the desired one.  Many combinations of resistors, capacitors and 

inductors can achieve this. Consider the circuit shown in figure 1 for a 

sinusoidal input voltage 
j t

INV e
   applied to a circuit composed of 

three passive circuit elements: resistor R, inductance L and capacitance C.  

The effect upon the RLC series circuit performance with a load resistance  

Load OUTR R  connected across the one of the passive elements will also 

be consider. 

 

Fig. 1.  RLC resonance circuit: a series combination of an 

inductor L, capacitor C and a resistor R. A load resistance 

Load OUTR R  is added to the circuit.  

 

The sinusoidal input voltage is 

  e
j t

IN
V

   

The impedances of the circuits components are 
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1

Z j L  inductor 

 
2

j
Z

C


  capacitor 

 
3

Z R             series resistance 

 
4 OUT

Z R        output or load resistance 

  

We simplify the circuit by combining circuit elements that are in series and 

parallel. 

 Parallel combination of series resistance and load resistance 

                  5

3 4

1

1 1
Z

Z Z





 

          Series combination: total impedance 

         
6 1 2 5

Z Z Z Z     

 

The current through each component and the potential difference across 

each component is computed from 

 
V

I V I Z
Z

   

 in the following sequence of calculations (figure 2) 
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Z Z

 

 

    

  

 

 

 

 

Fig. 2.  RLC resonance circuit: a series combination of an 

inductor L, capacitor C and a resistor R. A load resistance 

Load OUTR R  is added to the circuit. Kirchhoff’s Law are used 

to find the relationships between the currents and the 

relationships the voltages. 
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Computing all the numerical values is easy using the complex number 

commands in Matlab. Complex circuits can be analysed in more depth 

graphically than the traditional algebraic approach.   

 

The code below shows the main calculations that needed for the 

simulations. 

   f = linspace(fMin,fMax, N);  
   w = (2*pi).*f; 

    

% impedances 
   Z1 = 1i .* w .* L;   % inductive impedance (reactance) 
   Z2 = -1i ./ (w .*C); % capacitive impedance (reactance) 
   Z3 = R;              % series resistance 
   Z4 = ROUT;           % output or load resistance 

   
   Z5 = 1./ (1./Z3 + 1./Z4);    % parallel combination 
   Z6 = Z1 + Z2 + Z5;           % total circuit impedance 

  
% currents [A] and voltages [V] 
   I1 = V_IN ./ Z6; 
   I2 = I1; 
   V1 = I1 .* Z1; 
   V2 = I2 .* Z2; 
   V_OUT = V_IN - V1 - V2; 
   V3 = V_OUT; V4 = V_OUT; 
   I3 = V_OUT ./ Z3; 
   I4 = V_OUT ./ Z4; 

    
% phases 
     phi_OUT = angle(V_OUT); 
     phi_1   = angle(V1); 
     phi_2   = angle(V2); 

      
     theta_1 = angle(I1);  
     theta_2 = angle(I2); 
     theta_3 = angle(I3); 
     theta_4 = angle(I4); 
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We will consider a circuit with the following parameters:  

 amplitude of input emf  10.0V
in

V   

 inductance 3
10.0 10 H (10 mH)L


     

 capacitance 8
1.00 10 F (0.01 F)C 

   

 series resistance 2
1.00 10R     

 output (load) resistance 6
1.00 10

OUT
R       (output to CRO) 

 

Smulation         script   CRLCs1.m 

% ======================================================== 
%   INPUTS   default values [ ] 
% ======================================================== 

  
% inductance Z1 [10e-3 H] 
   L = 10e-3; 
% capacitance Z2 [1.0e-8 F] 
   C = 1.0e-8;   
% series resistance Z3 [ 1e2 ohms]     
   R = 1e2; 
% OUTPUT (LOAD) resistance Z4 [1e6 ohms] 
   ROUT = 1e6; 

  

  
% input voltage emf [10 V] 
   V_IN = 10; 
% frequency range [2000 to 50e3 Hz   5000]    
   fMin = 2000; fMax = 50e3; N = 5000; 
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Figure 3 shows the plots of the absolute values for the impedance of the 

inductor  1
Z , capacitor  2

Z , and total circuit impedance  6
Z .  

 

The inductive reactance increases linearly with frequency. At low 

frequencies, the inductor acts like a “short circuit” 

 
1

1
0 0

L
Z Z j L

f Z

 

  
 

 

The capacitive reactance is inversely proportional to the frequency. At 

high frequencies, the capacitor acts like a “short circuit” 

 
2

2
0 0

C

j
Z Z

C

f Z




 

  

 

 

At a certain frequency for an RLC circuit, the inductive reactance equals 

the capacitive reactance. The circuit is said to be resonant at this 

frequency. At resonance     L C
Z Z

1
L

C



  

 resonance frequency   0 0

1 1

2
f

LC LC



   

At the resonance frequency 

0
0 max

L C IN
f f Z Z I       
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Fig. 3.   The magnitude of the impedances for the capacitor, 

inductor and parallel combination as functions of frequency of 

the source. A sharp peak occurs at the resonance frequency for 

the impedance of the parallel combination.  

 

Since the total circuit impedance has a minimum value at resonance, the 

current from the source must be a maximum (figure 4). At resonance, the 

source voltage and the source current are in-phase. Only at the resonance 

frequency, is maximum power delivered to the load (figure 5). 
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Fig. 4.   The source current has a maximum at the resonance 

frequency. At resonance, the source voltage and source current 

are in-phase with each other. 

 

Fig. 5.   Maximum power is delivered to the load at the 

resonance frequency.     
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The resonance frequency of the circuit is 

 0

1

2
f

LC
  

The quality factor Q is a measure of the width of the current against 

frequency plot. The power drops by half (-3 dB) at the half power 

frequencies 
1

f  and 
2

f  where max
/ 1 / 2

IN
I I  . These two frequencies 

determine the bandwidth f of the current. 

 
2 1

f f f    

It can be shown that the quality factor Q is  

 0
f

Q
f




 

The higher the Q value of a resonance circuit, the narrow the bandwidth 

and hence the better the selectivity of the tuning. 

 

The code for determination of the bandwidth: 

% Resonance frequencies and Bandwidth calculations 
f0 = 1/(2*pi*sqrt(L*C)); 
Ipeak = max(abs(I1));         % max input current 
k = find(abs(I1) == Ipeak);   % index for peak voltage gain 
f_peak = f(k);                % frequency at peak  
I3dB = Ipeak/sqrt(2);         % 3 dB points 
kB = find(abs(I1) > I3dB);    % indices for 3dB peak 
k1 = min(kB); f1 = f(k1); 
k2 = max(kB); f2 = f(k2); 
df = f2-f1;                   % bandwidth  
Q = f0 / df;                  % quality factor 
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Figure 6 shows the current plot indicating the resonance frequency, half 

power frequencies and the bandwidth. 

 

Fig. 6.   The current plot indicating the resonance frequency, half 

power frequencies and the bandwidth.  

A summary of the calculations is displayed in the Command Window 

 theoretical resonance frequency f0 = 15915 Hz  

 peak frequency f_peak = 15915 Hz  

 half power frequencies f1 = 15140 Hz  16730  Hz  

 bandwidth   df = 1590 Hz  

 quality factor  Q  =  10.01 

fprintf('theoretical resonance frequency f0 = %3.0f Hz 

\n',f0); 

 

fprintf('peak frequency f_peak = %3.0f Hz \n',f_peak); 

 

fprintf('half power frequencies f1 = %3.0f Hz  %3.0f  Hz 

\n',f1,f2); 

 

fprintf('bandwidth   df = %3.0f Hz \n',df); 

 

fprintf('quality factor  Q  =  %3.2f  \n',Q); 
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The voltage across various elements is shown in figure 7.  At the 

resonance frequency, the magnitude of the voltage across the inductor 

and capacitor are equal and are have maximum values. However, the 

phase difference between these two voltages is  rad (figure 8). So, the 

voltage across both the inductor and capacitor is zero at the resonance 

frequency   0L cV V  .  

 

Fig. 7.   Voltage across different circuit elements. At resonance, 

the effects of the capacitor and inductor cancel each other. Note 

for this RLC circuit, the voltages across the capacitor and 

inductor are much larger that the source voltage. The reason for 

this is that the voltages act like vectors and no not add 

algebraically. You need to consider the phases of the voltages 

and their magnitudes. The voltages must be added like vectors.  
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Fig. 8.   At resonance,  / 2 rad / 2 rad
L C

        and the 

two voltages have the same magnitudes. Therefore, the effects 

of the capacitance and inductance cancel each other, resulting 

in a pure resistive impedance with the source voltage and 

current in phase. 

  

Kirchhoff’s Voltage Law states that the sum of the voltage drops around 

the circuit is equal to the input emf to the circuit. For ac circuits, it is not 

so straight forward to sum the voltages. You must account for the phases 

of each current.  

 1 2 3
V V V                  need to account for phase   

   abs(V1+V2+V3) 

 

The emf is 10 V   and at each frequency   1 2 3 10 VV V V   . 
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Consider the case when ROUT is large and its effects on the circuit can be 

ignored. At resonance: 

 The impedance is a minimum and is purely resistive (figure 3).   

 The current is a maximum and in phase with the source voltage 

(figure 4). 

  IN
IN L C

V
I I I

R
    

The voltage across the inductor is 

 0 0
IN

L L L L

V
V I X X

R

 
   

 
 

We can define the quality factor Q as 

 0LX
Q

R
  

Hence, the voltage of the inductor is 

 L INV QV  

The voltage across the capacitor is 

 

0

0

IN
C C C C

C L IN

C

V
V I X X

R

V V QV

X
Q

R

 
   

 

 



 

Q measured from the bandwidth:  Q = 10.0. 

 Calculated in the Command Window from the above relations, Q = 10.0.  
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We can also look at the behaviour of the circuit in the time domain and 

gain a better understanding of how complex numbers give us information 

about magnitudes and phases.  The time domain equation for the currents 

and voltages are 

  

 

 

 

 

 

 

1

1

3

1

3

4

1 1

2 2

3 3

1 2 1

3 3

4 4

e
j t

IN

j t

L

j t

C

j t

OUT R

j t

IN

j t

R

j t

RLoad

V

v v V e

v v V e

v v v V e

i i i I e

i i I e

i i I e



 

 

 

 

 

 

















 

 

  

  

 

 

 

Each of the above relationships are plotted at a selected frequency which 

is set within the script. The graphs below are for the resonance frequency 

and the half-power frequencies. 

   c = 1; 
%  c = 1 fs = f_peak;  
%  c = 2 fs = f1; 
%  c = 3 fs = f2 
   if c == 1; kk = k; fs = f_peak; kk = k; end 
   if c == 2; kk = k1; fs = f1; end 
   if c == 3; kk = k2; fs = f2; end 
    Ns = 500; 
    ws = 2*pi*fs; 
    Ts = 1/fs; 
    tMin = 0; 
    tMax = 3*Ts; 
    t = linspace(tMin,tMax,Ns); 
    emf = real(V_IN .* exp(1j*ws*t)); 
    v1 = real(abs(V1(kk)) .* exp(1j*(ws*t + phi_1(kk)))); 
    v2 = real(abs(V2(kk)) .* exp(1j*(ws*t + phi_2(kk)))); 
    v3 = real(abs(V3(kk)) .* exp(1j*(ws*t + phi_3(kk)))); 
    i1 = real(abs(I1(kk)) .* exp(1j*(ws*t + theta_1(kk)))); 
    i3 = real(abs(I3(kk)) .* exp(1j*(ws*t + theta_3(kk)))); 
    i4 = real(abs(I4(kk)) .* exp(1j*(ws*t + theta_4(kk)))); 
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Fig. 9.   The voltages at the resonance frequency and half-

power frequencies.  



17 
 

 

 

 

 

Fig. 10.   The currents at the resonance frequency and half-

power frequencies.  
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Investigating the response of the RLC series circuit with 

changes in parameters 

You can simply change the input parameters and immediately 

see the changes in the response of the circuit.  

 

 Changing the value of the series resistance R does not 

change the resonance frequency 0f . However, it does 

change the sharpness of the current peak. As R is increased, 

the bandwidth increases and the Q factor decreases. Also, 

the current in the circuit decreases (figures 11 and 12). 
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Fig.  11.   01.0 k 15.9 kHz 1.59 kHz 10.1R f f Q       

 

Fig.  12.   010.0 k 15.9 kHz 15.9 kHz 1.0R f f Q       
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 Decreasing the output resistance (load) ROUT slightly 

decreases the bandwidth and increases the Q value, while 

the current and power delivered to the load is increased 

(figures 13 and 14).  
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Fig.  13.   01.0 M 15.9 kHz 1.59 kHz 10.1OUTR f f Q       

 

 Fig.  14.   01.0 k 15.9 kHz 14.4 kHz 11.1OUTR f f Q        
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 Textbook examples: Many textbook style problems on ac 

circuits can be done using the complex number functions in 

Matlab rather than doing lots of tedious algebra 

 

Sample Problem  

Find the magnitude and phase of the current in the RLC 

series circuit with parameters: 

    emf = 20 V  f = 1590 Hz,  R = 30  ,  L = 14 mH,  C = 1  F 

 

Run the script with the above parameters and set the range 

of frequencies as 

           fMin = 1590; fMax =52e3 
 

The first element of each array corresponds to the frequency of the 

source emf. The answers to the problem can be found by entering 

commands in the Command Window 

>> abs(I1(1))     ans =  0.4015 

>> angle(I1(1)) ans =  -0.9245 

>> rad2deg(angle(I1(1)))    ans =   -52.9696 

 

The magnitude of the current is 400 mA and the current lags the 

source emf by 53o. 

 

Using Matlab it is easy to show the phase relationship between the 

source emf and current graphically (figure 15). Also, you can show 

the resonance peak for the current (figure 16). 
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Fig 15.  The time variation in the currents at the frequency of 1590 Hz. The 

green curve is the scaled applied emf curve. The plots illustrate the lag in 

phase of 53o of the current with respect to the source emf.  

 

   Fig. 16.  Resonance response of the RLC series circuit  0 13.5 kHzf  . 
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Modeling Experimental Data 

Data was measured for the circuit shown in figure 1.  An audio oscillator 

was used for the source and the output was connected to digital storage 

oscilloscope (DSO). The component values used were:  

 series resistance 3
1.00 10

S
R     

 capacitance 8
1.0 10 F (0.01 F)C 

   

 inductance 3
~ 5 10 HL


    

 assume DSO resistance 6
1.00 10

OUT
R       (output to CRO) 

 

The measurements are given in the script CRLCs2.m 

Figure 11 shows a plot of the experimental data. 

 

 Fig. 11.  Plot of the experimental measurements. 
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We can use the simulation CRLCs2.m  to fit theoretical curves to the 

measurements by adjusting the input values for the inductance, 

capacitance and resistance to try and get the best fit (figure 12).   

 

 Fig. 12.   The best-fit of the model to the measurements. 

 
3 8 3

0

10 V 3.8 10 H 1.1 10 F 1.1 10

24.6 kHz 39.3 kHz 0.63

IN
V L C R

f f Q

 
       

   
 

 

If you consider the simplicity of the code in the Matlab script to model 

resonance circuits, this computational approach has many advantages 

compared with the traditional algebraic approach. 

 

 

 


