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 DOING PHYSICS WITH MATLAB 

ELECTROMAGNETISM USING THE FDTD METHOD 

[1D] Propagation of Electromagnetic Waves 

Ian Cooper 
Please email any corrections, comments, suggestions or additions 
 matlabvisualphysics@gmail.com 

 

Matlab Download Directory 

ft_03.m     ft_sources.m 

Download and run the script ft_03.m. Carefully inspect the script to 

see how the FDTD method is implemented.  Many variables can be 

changed throughout the script, for example, type of excitation 

signal, boundary conditions, time scales, properties of the medium. 

 

The script ft_03.m is a very versatile program to investigate many 

aspects of the propagation of electromagnetic waves through 

dielectric media. You can investigate: free space propagation; 

propagation in different dielectric media; propagation in lossy 

dielectric media; reflection and refraction (transmission at an 

interface); interference effects; resonance. 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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The Finite-Difference Time-Domain Method (FDTD) is one of the 

most popular techniques used in solving problems in 

electromagnetism because it is very easy to write the computer 

code even for three-dimensional problems. The method was first 

proposed by K. Yee in the early 1970s. In this document, solutions 

to Maxwell’s equation will be given for the one-dimensional 

propagation of electromagnetic waves generated from a point 

source.  

 

MAXWELL’S EQUATIONS and the FDTD Method 

The theory on which the FDTD is simple.  To solve problems in 

electromagnetism, you simply discretise in both space and time the 

Maxwell’s curl equations with a central difference approximation. 

 

Maxwell’s equations predict the existence of electromagnetic 

waves that propagate through free space at the speed of light c0. 

The electric field and the magnetic field are time dependent and 

influence each other - a time varying magnetic field induces a time 

varying electric field and the time varying electric field induces a 

time varying magnetic field and the process just continues. 
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The time-dependent Maxwell’s curl equations in a non-magnetic 

lossy dielectric material with a dielectric constant r  and the losses 

determined by the medium’s conductivity    are 
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where the current density J  is J E . 

   

For the one-dimensional case where a plane electromagnetic wave 

propagates in the Z direction due to a time varying electric field 

component xE  and a magnetic field component yH , Maxwell’s curl 

equations reduce to 
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This mode of propagation is called a TEM wave (electric field 

polarized in X direction with 0zE   and 0zH  ). 
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The values of  0  and 0  differ by several orders of magnitude and 

hence xE  and yH  will also differ by several orders of magnitude 

when xE  and  yH  are measured in S.I. units. This problem can be 

overcome by making a change of variable where E  is replaced by a 

scaled value SE  for the electric field 
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which gives 
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We can approximate both the spatial and temporal partial 

derivatives using the central difference method   
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To find the latest value for the electric field, equation 5a is 

rearranged to give  
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and equation (4b) becomes 
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 (5c)  
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We can simulate an electromagnetic wave propagating from one 

medium to another by making both the relative dielectric ( )r z  and 

conductivity ( )z  functions of z. To simply the coding, we can 

define a series of functions  
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For stability of the iterative method is often given by the Courant 

Condition 
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where D is the dimension of the simulation and we will take the 

equality sign for the stability condition. Thus, a given cell size or 

grid spacing z  determines the time step t  in a simulation or 

vice-versa 
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The default value used in the simulation is D = 4 giving 
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Substituting equations 6 into equations 5b and 5c gives 
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 (10b)
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Equations 10a and 10b are interleaved, the new value of sxE  at 

position z  is calculated from the previous value of sxE  at position z  

and the most recent pair values of yH  at  / 2z z   and 

 / 2z z  . yH  is calculated at  / 2z z   from its previous value 

at  / 2z z   and the most recent values of sxE  at z and  z z  .  
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This interleaving is at the heart of the FDTD method, that is, the 

equations are solved in a leap-frog manner where the electric field 

is solved at a given instant in time, then the magnetic field is solved 

at the next instant in time, and the process is repeated over and 

over again.   

 

To write the mscript to solve iteratively equations 10a and 10b, we 

need to assign indices for time ct  and position cz , where 

            1,2,3, ,ct nt  

              1,2,3, ,cz nz   

  

For the electric field sxE   

     Time:           / 2 1      / 2t t ct t t ct          

     Position:     1 1z z cz z cz z z cz               

 

For the magnetic field yH   

     Time:           1t ct t t ct             

     Position:   

                / 2 1 / 2 3 / 2 1z z cz z z cz z z cz              
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Equations 10a and 10b can now be expressed in a format that is 

now straight forward to write the computer code 
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 Fig. 1.   Interleaving of the sxE  and yH  fields in space 

and time in the FDTD method. 
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BOUNDARY CONDITIONS 

A fundamental assumption in the FDTD method is that in 

calculation the E and H fields, we need to know the surrounding H 

and E field values, but at the edges of the Z space we do not have 

values for E and H. So, it is important that the boundary values for 

E and H are specified at each time step. 

 

The boundary condition where E = 0 is called a perfect electric 

conductor boundary (PEC). A perfect magnetic conductor 

boundary (PMC) is when H = 0 is set as the boundary condition. 

This means that when a pulse arrives at the ends of the Z space, the 

boundary conditions that are imposed on the solution results in the 

reflection of both the electric and magnetic fields. 

 

Absorbing boundary conditions 

We can stop the reflections at the boundary by applying absorbing 

boundary conditions. We can solve this problem by assuming that 

there are no sources outside the Z space and that the wave 

propagates outward across the boundary. From the stability 

condition given by equation 9 with D = 4 
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it takes two time steps for the wave to propagate that from one 

grid position to the next in free space. Hence, to apply absorbing 

boundary conditions at the ends of the Z space, the values of the 

fields at the boundaries of the Z space are set to the values of the 

adjacent z position two time steps earlier. In terms of the space cz 

and time ct indices, the absorbing boundary conditions are: 
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These boundary conditions are easy to code. We need to simply 

store the values for the fields adjacent to the end points of the Z 

space for the previous two time steps. 
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Excitation of the propagating E and H fields 

A variety of functions at any grid point can be used as the source of 

the propagating electromagnetic wave. The mscript fd_sources.m 

was used to create the plots of the source functions shown in 

figures 2, 3 and 4. 

 

Gaussian pulse 

A Gaussian pulse in the electric field at a grid point produces an 

electromagnetic wave pulse that propagates away in both 

directions from a fixed source point.  

 

The values of Esx and Hy are calculated by separate loops due to the 

interleaving of the Esx and Hy values. After Esx has been calculated, 

the Esx value at the source point is over-written by the value 

calculated from the Gaussian source function when its value is 

greater than some threshold value. This is referred to as a hard 

source because a specific value is imposed on Esx on the FDTD grid. 

In wave impinging upon the hard source will lead to reflections. 
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The Gaussian pulse is given by equation 14 
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where zS is the index specifying the location of the point source, A 

is the maximum height of the pulse, t0 determines the time step 

index for the peak value of the pulse, s is the spread of the pulse 

and ct is the index for the time step. 

 

Fig. 2.   Hard source: Gaussian time variation in Esx at 

source point.      (A = 1,   s = 12,   t0 = 40). 
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Sinusoidal Excitation 

A continuous sinusoidal source (equation 16) can act to excite the 

propagation of the electromagnetic wave along the Z axis. 

 (16)   ( ) sin 2sx S sE z A f ct t   

 

Fig. 3.   Sinusoidal excitation signal. 
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Modulated Gaussian pulse 

A modulated Gaussian pulse given by equation 15 act as a source at 

the point zs.  
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The frequency of the modulation signal is fs. 

 

 

Fig. 4.   Modulated Gaussian pulse. 
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fd_sources.m 

% INPUTS ================================================== 
% Number of time steps 
    nt = 200; 
% Amplitude of source signal 
    A = 1; 
% Width of source signal 
    s = 12; 
% Signal frequency  
    fS = 3e8/500e9; 
% Time for peak signal 
    ct0 = 100; 
% wavelength 
    wL0 = 500e-9; 
 

% CALCULATIONS ============================================     
% speed of light / frequency / period 
   c0 = 3e8; 
   f0 = c0/wL0; 
   T0 = 1/f0; 
   tMax = 10*T0; 
   t = linspace(0,tMax,nt); 
   dt = t(2)-t(1); 
      ct = 1:nt; 

     

% GAUSSIAN PULSE 
  EG = A.*exp(-(0.5.*(ct0 - ct)./s).^2); 
% SINE FUNCTION 
  ES = sin(2*pi*f0*t); 
% MODULATED GAUSSIAN SIGNAL 
  EMG = EG .* ES; 
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MATLAB  script ft_03.m 

 
The finite difference time domain (FDTD) uses a centre-difference 

representation of the continuous partial differential equations to 

create iterative numerical models of electromagnetic wave 

propagation by solving Maxwell’s equations in the time domain.  

Maxwell’s equations are discretized in time and space and a leap-

frog algorithm is used to find the Ex-field and Hy-field as functions of 

time and space. 

 

The number of time steps Nt is varied to change the simulation 

time. 

 

The number of spatial grid points is specified by the variable Nz.  

Generally Nz is fixed at the default value Nz  = 400. 

 

Time and position are not independent quantities as shown by 

equation 7. 
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To specify the Z axis, the wavelength associated with a sinusoidal 

wave is given by the variable lambda. 
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In the simulations using the script, a point source is used to excite 

an electromagnetic wave that propagates along the Z axis. You can 

select the source excitation by setting the value of the variable 

flagS. 

     flagS = 1    Gaussian pulse excitation 

     flagS = 2    Sinusoidal excitation 

     flagS = 3     Modulated sinusoidal excitation with a Gaussian 

                         envelope 

 

The source is specified by the inputs: zS (Z index for location of 

excitation point); A (amplitude); width (width of the Gaussian pulse 

in time steps); centre (centre of pulse in time steps). 

 

The properties of the media are specified by the relative 

permittivity (dielectric constant) eR and the conductivity S. The 

default for the program is to have a uniform medium or two 

uniform media where the boundary occurs at the grid position 

given by M2. You can specify the electrical properties of the Z space 

by specifying the relativity permittivity and conductivity for a range 

of grid points. This is not done in the INPUT section of the script. 
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% ELECTRICAL PROPERTIES OF MEDIA 

   eR = ones(1,Nz).* eR1;  % Relative permittivity 

   indexR = round(200:200+12.5/8); 

   eR(indexR) = eR2;     

 

We can monitor the time evolution of the E-field and H-field at five 

Probe positions along the Z axis which is specified by the variable 

cP. You can easily change the positions of the Probes. 

 

The variables limE and limH are used to change the Y limits for the 

plots of the E-field and H-field as functions of time in figure 1. 
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The boundary conditions are specified by the variable flagBC. 
 
% BOUNDARY CONITIONS --------------------------------------

--------------- 

%    flagBC = 1   absorbing 

%    flagBC = 2   Perfect electric conductor PEC at end 

                  boundary only 

%    flagBC = 3   Perfect magnetic conductor PMC at end  

                  boundary only 

%    flagBC = 4   Perfect electric conductor PEC at both  

                  boundaries 

   flagBC = 1;   

 

 
    

 

An animation of figure can be saved as a gif file using the variable 

f_gif = 1.  

 

 

The results of the modelling are shown in Figure Windows. 
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Fig. 5.  Plot of the source function (Modulate Gaussian Pulse: 
width  = 50 and centre = 100) 
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Fig. 6.  The E-field and H-field after 600 time steps. The magenta 
dots show the positions of the 5 Probes.   
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Fig. 7.  EM pulse hitting a medium with a different dielectric 
constant. Pulse: width = 25 and centre = 100. Medium 1 is free 
space and Medium 2 has a dielectric constant of 9. 
 

 
Fig. 8.   Summary of the results for EM pulse shown in figure 7 
the hitting the boundary. The pulse travels at a speed of c0/3 in 
Medium 2 which has a dielectric constant of 9. 
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