
1

DOING PHYSICS WITH MATLAB

Ian Cooper

matlabvisualphysics@gmail.com

A COMPUTATIONAL APPROACH TO

ELECTROMAGNETIC THEORY

[2D] NUMERICAL INTEGRATION

POTENTIAL FROM A SQUARE PLATE

DOWNLOAD DIRECTORIES FOR MATLAB SCRIPTS

 Google drive

 GitHub

cemb001.m

Calculation of the electrostatic potential along the symmetry axis of

a uniformly charged square plate

simpson2d.m

 [2D] integral

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/math_integration_2D.pdf

2

In electromagnetism it is often necessary to evaluate a surface

integral. The integration can often be done simply by a numerical

approximation using the function simpson2d.m.

However, when using numerical tools, one must keep in mind that

they never give an exact answer. The accuracy of the numerical

result usually depends upon the number of grid points used in the

evaluation of the integral and on how well the geometry of the

problem is represented by a finite mesh. If the method works

correctly, the computed answer should converge towards the exact

result as the number of grid points increases (increased resolution).

For any numerical computation, one should test the convergence

and if possible, compare the result to an exact analytical answer.

We will use a simple example, namely the calculation of the

electrostatic potential (0,0,)z along the symmetry axis of a

uniformly charged square plate. The square is the region

 0L x L L y L z−   −   =

 and the surface charge density (,)x y is constant

 0
(,)x y =

3

The electrostatic potential from the charged square plate is

 (1) 0

2 2
0 2

' '
(0,0,)

4 ' '

L L

L L

dx dy
z

x y z




  − −

 
=  

+ + 
 

The evaluation of the integral is done using the simpson2d.m

function for a x-y mesh with NxN grid points where N must be an odd

integer.

The electrostatic potential ()
PS

r from a point charge Q at a point

with displacement r is

 (2)
0

()
4

PS

Q
r

r


 
=

To test convergence and the evaluation of the numerical method we

can compare the predictions from equations 1 and 2. Far from the

plate, the potential from the plate should converge to the value from

the point charge. We can also increment N to find the its minimum

value for convergence.

The results of the modelling using the Script cemB001.m are

displayed in the figures 1 and 2.

4

Fig. 1. Even at distances for z > ~ 2 m the plate appears to be a

point source and there is excellent agreement between the

predictions of equations 1 and 2.

5

Fig. 2. Even with a small value for N (N > 9) the computation

converges to a fixed value.

The [2D] form of Simpson’s rule in general is a good numerical

method to evaluate [2D] surface integrals.

As N increases, it does not always guarantee convergence. In some

instances, the value of the integral may oscillate.

6

cemB001.m

Section of the Script that performs the computations

% Length of square plate 2*L
 L = 1;
% Permitty of free space / Coulomb constant
 eps0 = 8.85e-12;
 kC = 1/(4*pi*eps0);
% Surface charge density of plate
% rho0 = 1;
 rho0 = 1/kC;
% Constant / Charge
 K = rho0/(4*pi*eps0);
 Q = (2*L)^2*rho0;
% X Y Z grids
 N = 219; % number of grid pints: must be an ODD number
% Input z range >>>>>>
 zMin = 0.1*L; zMax = 25*L;
 xMin = -L; xMax = L;
 yMin = -L; yMax = L;
 z = linspace(zMin,zMax,N);
 x = linspace(xMin,xMax,N);
 y = linspace(yMin,yMax,N);
 [xx, yy] = meshgrid(x,y);
% Function to be integrated
 pot = zeros(N,1);
 for n = 1:N
 fn = 1./(sqrt(xx.^2 + yy.^2 + z(n).^2));
 pot(n) = simpson2d(fn,xMin,xMax,yMin,yMax);
 end
% Potential
 pot = K.*pot;
% Potential from a point source
 potPS = Q./((4*pi*eps0).*z);
% Convergence
===
 zC = 10;
 potPSC = Q./((4*pi*eps0).*zC);
 n = [3 5 7 9 11 21 31 41 51]';
 potC = zeros(length(n),1);
 for c = 1 : length(n)
 x = linspace(xMin,xMax,n(c));
 y = linspace(yMin,yMax,n(c));
 [xx, yy] = meshgrid(x,y);
 fnC = 1./(sqrt(xx.^2 + yy.^2 + zC.^2));
 potC(c) = simpson2d(fnC,xMin,xMax,yMin,yMax);
 end
 potC = K*potC;

