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In electromagnetism it is often necessary to evaluate a surface 

integral. The integration can often be done simply by a numerical 

approximation using the function simpson2d.m. 

 

However, when using numerical tools, one must keep in mind that 

they never give an exact answer. The accuracy of the numerical 

result usually depends upon the number of grid points used in the 

evaluation of the integral and on how well the geometry of the 

problem is represented by a finite mesh. If the method works 

correctly, the computed answer should converge towards the exact 

result as the number of grid points increases (increased resolution). 

For any numerical computation, one should test the convergence 

and if possible, compare the result to an exact analytical answer. 

  

We will use a simple example, namely the calculation of the 

electrostatic potential (0,0, )z  along the symmetry axis of a 

uniformly charged square plate. The square is the region 

           0L x L L y L z−   −   =  

 and the surface charge density ( , )x y  is constant 

           0
( , )x y =  
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The electrostatic potential from the charged square plate is 
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The evaluation of the integral is done using the simpson2d.m 

function for a x-y mesh with NxN grid points where N must be an odd 

integer. 

 

The electrostatic potential ( )
PS

r  from a point charge Q at a point 

with displacement r is  
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To test convergence and the evaluation of the numerical method we 

can compare the predictions from equations 1 and 2. Far from the 

plate, the potential from the plate should converge to the value from 

the point charge.  We can also increment N to find the its minimum 

value for convergence. 

 

The results of the modelling using the Script cemB001.m are 

displayed in the figures 1 and 2. 
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Fig. 1.   Even at distances for  z > ~ 2 m the plate appears to be a 

point source and there is excellent agreement between the 

predictions of equations 1 and 2. 
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Fig. 2.   Even with a small value for N ( N > 9) the computation 

converges to a fixed value. 

 

The [2D] form of Simpson’s rule in general is a good numerical 

method to evaluate [2D] surface integrals. 

 

As N increases, it does not always guarantee convergence. In some 

instances, the value of the integral may oscillate. 
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cemB001.m 

Section of the Script that performs the computations 

% Length of square plate 2*L 
  L = 1; 
% Permitty of free space / Coulomb constant 
  eps0 = 8.85e-12; 
  kC = 1/(4*pi*eps0); 
% Surface charge density of plate 
%  rho0 = 1; 
  rho0 = 1/kC; 
% Constant / Charge    
  K = rho0/(4*pi*eps0); 
  Q = (2*L)^2*rho0; 
% X Y Z grids 
  N = 219;   % number of grid pints: must be an ODD number 
% Input z range >>>>>> 
  zMin = 0.1*L; zMax = 25*L; 
  xMin = -L; xMax = L; 
  yMin = -L; yMax = L; 
  z = linspace(zMin,zMax,N); 
  x = linspace(xMin,xMax,N); 
  y = linspace(yMin,yMax,N); 
 [xx, yy] = meshgrid(x,y); 
% Function to be integrated 
  pot = zeros(N,1); 
  for n = 1:N 
    fn = 1./(sqrt(xx.^2 + yy.^2 + z(n).^2)); 
    pot(n) = simpson2d(fn,xMin,xMax,yMin,yMax); 
  end 
% Potential  
  pot = K.*pot; 
% Potential from a point source        
  potPS = Q./((4*pi*eps0).*z);  
% Convergence 
========================================================= 
  zC = 10; 
  potPSC = Q./((4*pi*eps0).*zC); 
  n = [3 5 7 9 11 21 31 41 51]'; 
  potC = zeros(length(n),1); 
  for c = 1 : length(n) 
    x = linspace(xMin,xMax,n(c)); 
    y = linspace(yMin,yMax,n(c)); 
    [xx, yy] = meshgrid(x,y);     
    fnC = 1./(sqrt(xx.^2 + yy.^2 + zC.^2)); 
   potC(c) = simpson2d(fnC,xMin,xMax,yMin,yMax); 
  end 
   potC = K*potC; 


