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DOWNLOAD DIRECTORIES FOR MATLAB SCRIPTS 

 

 Google drive 

 

 GitHub 

 

The following mscripts are used to plot the potential and electric 

field in a [2D] space for different configurations of charged circular 

disks. It is difficult to write one mscript to model different charge 

distributions, therefore, each mscript is used basically for one charge 

distribution.  In the plotting of the electric field lines you always need 

to check that the number of field lines converging or diverging to a 

charged object is related to the size of the charge. Where possible, 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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you should always check your code by comparing numerical values 

calculated from the program with theoretical calculations. Numerical 

values can be checked in the Command Window and by using the 

Data Cursor tool in a Figure Window. Download and inspect the 

mscripts and make sure you can follow the structure of the 

programs. The charge configuration is specified in the INPUT section 

of the mscript. 
 

simpson1d.m 

 [1D] computation of an integral using Simpson’s rule. The 

function to be integrated must have an ODD number of the 

elements. 

cemVE01.m       

 Single charge +Q or –Q at the origin of the [2D] space 

Calculation of the potential between two points by the 

evaluation of the line integral of the electric field 

                                        
2

1
21

r

r
V E dL= −   

cemVE02.m      Electric dipole [2D] 

cemVE03.m      Two charges of equal magnitude and same sign 

cemVE04.m       Two charges of unequal magnitude and opposite sign 

cemVE05.m        Two charges of unequal magnitude and same sign 

cemVE06.m      Three charges at the corners of an equilateral triangle 
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cemVE07.m   

 [2D] quadrupole – four charges of equal magnitude and 

alternating sign lying on the corners of a square 

cemVE08.m       

         [1D] quadrupole of 3 charges in a straight lines    -q   +2q   -q  

      

cemVE09.m      4 equal charges at the corners of a square  

cemVE10.m      Model of a short capacitor  
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INTRODUCTION 

All of electromagnetic is contained in the Maxwell’s equations of 

the electric and magnetic field. 

 

Maxwell’s partial differential equations of electrodynamics were 

formula around 1870. The equations represent a fundamental 

unification of electric and magnetic fields and predict the existence 

of electromagnetic waves. 

Integral form Differential form 
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The situations that are described by these equations can be very 

complicated. How to handle them becomes much easier using 

Matlab as a tool. 

 

Maxwell’s equation shows us how the fields are created: 

 

 

Interactions between fields produces 

electromagnetic forces  → “electricity” 

 

 

So, we will start with simple situations and progress to more 

complicated phenomena. 
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We can solve problems and visualize electric fields and electrical 

potentials due to various charge distributions very easily using 

Matlab. 

 

From basic electrostatic theory, the electric field E  at position R  due 

to a charge 
1

Q  located at position 1
R  is given by Coulomb’s Law 
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When there are many charges, the electric field is given by the vector 

sum of the electric field due to each individual charge. Therefore, to 

find the resultant electric field due to N charges, it is best to add the 

x, y and z components of the electric field due to each charge 
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The electrical potential ( , , )V x y z  at position ( , , )R x y z  due to the N 

charges is 
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Equations 1 to 3 are also valid for spherical charged conductors. In 

the Matlab mscripts we will consider charges located in a [2D] plane 

and compute the potential and electric field only in this XY plane. 

The charged objects correspond to charged circular objects of radius 

a.  

 

By inspecting equation 2 and 3 you see immediately there are 

problems in graphing the electric field and the potential 

• 0
c z

R R E V− → → →  

• 
0

0 ?
0

c c x
x x R R E− − → →                                                      

same for the y and z components 

• As the electric field falls rapidly with increasing distance from a 

charge, it is often difficult to show graphically the vector field. 

 

To overcome the above problems, in the Matlab mscripts, the 

following are implemented in the code: 

• The values for the electric field and potential are assigned to 

saturation values when sat sat
E E E E → =  and  

sat sat
V V V V → =  

• If the measurement point R  is too close a point charge c
R  the 

separation distance is assigned to a minimum separation 

distance minR. 
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• If 0
c

x x− →  and 0
c

y y− →  then the separation distances for the 

components are also set to minimum values  
c

x x− →  minRx  

and 
c

x x− →  minRy. 

 

We also have another problem that must be addresses and that is in 

the drawing of the electric field lines. Electrostatic field lines start on 

a positive charge or at infinity and end on negative charge or at 

infinity. Plots showing electric field line patterns typically have the 

properties 

1. Tangents to the electrostatic field lines are everywhere parallel 

to the electric field.  

2. The density of the electric field lines is proportional to the 

strength of the electric field. 

3. All points on an equipotential surface (or contour for [2D]) are 

at the same electrostatic potential. 

4. The electrostatic field lines are perpendicular to equipotential 

surfaces (contours in [2D]) at every point:   E V= − . 

5. A positive test charged placed in the electric field would move 

along an electric field line in the direction of lower potential. 

 

In the Matlab mscript the streamline command is used to draw the 

electric field lines by specifying the starting point for each streamline 

(electric field line). The streamlines are drawn from a starting point 
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to other points that are always in the direction of the lowest 

potential. For example, twice as many lines must start on a +2 charge 

as on a +1 charge. For a negative charge, then the electric field 

components are reversed in the streamline command. 

 

It would be difficult to write one program for many different charge 

distributions. So, for each different charge distribution we will use a 

separate mscript.  The mscripts are basically the same but different 

coding is used for the graphics, especially the plotting of the electric 

field lines. Shown below are examples of the graphs of the potential 

and electric fields for a number of charge distributions. It is an easy 

task for you to create your own mscripts for other charge 

distributions.   
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Example 1     Single charge at the origin            cemVE01.m 

Q  = 20x10-6  C Q  = - 20x10-6  C 

  

 
 

  

                 Positive charge red dot  /   Negative charge black dot 
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Q  = 20x10-6  C Q  = - 20x10-6  C 
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Q  = 20x10-6  C Q  = - 20x10-6  C 

 

electric field lines (white) 

 

  

 

Numerical values can be 

determined from the Command 

Window or using the Data cursor in 

a Figure Window. 

Example 0.8040x = −  m 0.9160y =  m 

x(300) → -0.8040  y(730) → 0.9160 

xG(730,300) → -0.8040  yG(730,300) → 0.9160 



13 
 

V(730,300) → -1.4749x105  V 

 E(730,300) → 1.2101x105  V.m-1 

Ex(730,300) → 7.9825x104  V.m-1 

Ey(730,300) → -9.0945x104  V.m-1 

direction E:   =  -48.7256o 

N.B.  the order of the indices in the [2D] arrays for x and y. 

 

Calculation of the potential between two points is computed by the 

evaluation of the line integral of the electric field 

                                        
2

1
21

r

r
V E dL= −   

 

In the evaluation of the integral, the integrand must have an odd 

number of elements. The coordinates of the two points at are 

determined by specifying the indices for the x and y arrays.  

The numerical values for the line integral and the potential 

difference V2-V1 are displayed in the Command Window. 

 x1 = 0.200  m      y1 = -1.760  m 

 V1 = 1.015e+05  V   E1 = 5.729e+04  V/m 

  x2 = 1.040  m       y2 = 1.160  m 

 V2 = 1.154e+05  V   E2 = 7.406e+04  V/m 

 dV from calculation of potentials    

 V2 - V1 = 1.390e+04  V 

 dV from calculation of line integral E.dL    

 V21 = 1.390e+04  V 
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Section of the mscript   cemVE01.m 

 

% Calcuation   LINE INTEGRAL     Nx1 Nx2 Ny1 

Ny2  must all be ODD numbers 

Nx1 = 551; Nx2 = Nx1 + 210;      % must add an 

EVEN number 

Ny1 = 61;  Ny2 = Ny1 + 730;      % must add an 

EVEN number 

f = Ex(Ny1,Nx1:Nx2);             % f must have 

an ODD number of elements 

sx1 = x(Nx1); sx2 = x(Nx2); 

Vx = -simpson1d(f,sx1,sx2); 

f = Ey(Ny1:Ny2,Nx2)'; 

sy1 = y(Ny1); sy2 = y(Ny2); 

Vy = -simpson1d(f,sy1,sy2); 

V21 = Vx + Vy; 

dV = V(Ny2,Nx2) - V(Ny1,Nx1); 

  

disp('   '); 

fprintf('x1 = %2.3f  m',sx1); 

fprintf('      y1 = %2.3f  m\n',sy1); 

fprintf('V1 = %2.3e  V',V(Ny1,Nx1)); 

fprintf('   E1 = %2.3e  V/m\n',E(Ny1,Nx1)); 

disp('   ') 

fprintf('x2 = %2.3f  m',sx2); 
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fprintf('       y2 = %2.3f  m\n',sy2); 

fprintf('V2 = %2.3e  V',V(Ny2,Nx2)); 

fprintf('   E2 = %2.3e  V/m\n',E(Ny2,Nx2)); 

disp('   '); 

disp('dV from calculation of potentials   '); 

fprintf('   V2 - V1 = %2.3e  V\n',dV); 

disp('dV from calculation of line integral E.dL   

'); 

fprintf('   V21 = %2.3e  V\n',V21); 

disp('   '); 

disp('   '); 
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Example 2:   [2D] ELECTRIC DIPOLE         cemVE02.m 

An electric dipole consists of two separated charges of equal 

magnitude but of opposite sign. The traditional analytical approach is 

to assume that the separation distance of the charges is much 

smaller than the distance of the detection point from the dipole.  In 

this approximation 
2

1
V

r
  and 

3

1
E

r
 . However, using the 

superposition principle where the fields are added at the detection 

point, this approximation does not have to be used, and the variation 

in the fields with distance from the dipole can be examined from the 

plots using the Data Cursor or from numerical results displayed in the 

Command Window. 
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The closer the spacing of the potential contours the greater the 

electric field strength    ˆ ˆV V
E V i j

x y

  
= − = − + 

  
. 
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From the Command Window 

y(501) → 0     x(686) → 0.7400     x(871) → 1.48     x(871) / x(686) = 2 

V(501,686) → - 6.0401x105    V(501,871) → - 9.2638x105 

     V(501,686)  / V(501,871) → 6.5 

E(501,686) → 3.0038x106    E(501,871) → 1.4132x105 

     E(501,686)  / E(501,871) → 21.3 

 

From the numbers, you can see that in doubling the distance from 

the centre of the dipole along is axis (y = 0), there is a dramatic 

decreasing in the potential and electric field. This is because the 

effects of the positive charge cancel the effects of the negative 

charge to some extent. 
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In the lower plot, the electric field lines (in white) are superimposed 

upon the plot of the potential. The direction of the electric field 

anywhere on an electric field line is from the region of higher 

potential to lower. It is not so easy to place an arrow on the electric 

field lines using the Matlab streamline function.   

 

The plots below show quiver plots for the electric field. In left plot 

the arrow length is proportional to the electric field. In the plot on 

the right, each arrow has a unit length. 
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Example 3:  Two charges of equal magnitude and same sign 

                                                                                             cemVE03.m 
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Example 4:  Two charges of unequal magnitude and opposite signs 

                                                                                               cemVE04.m 

Q(1) = + 20x106  C     Q(2) = - 60x106  C 

 

 

 

 

Q(1) = + 20x106  C     Q(2) = - 60x106  C 
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Q(1) = + 20x106  C     Q(2) = - 60x106  C 

 

 

 

 

 

Q(1) = + 20x106  C     Q(2) = - 60x106  C 
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28 
 

Example 5:  Two charges of unequal magnitude and same sign 

                                                                                    cemVE05.m 

Q(1) = + 20x106  C     Q(2) = + 60x106  C 

 

 

 

 

Q(1) = + 20x106  C     Q(2) = + 60x106  C 
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Q(1) = + 20x106  C     Q(2) = + 60x106  C 
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Q(1) = + 20x106  C     Q(2) = + 60x106  C 
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Example 6:  Three equal charges at the corners of an equilateral 

triangle               cemVE06.m 
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Example 7:   [2D] quadrupole – four charges of equal magnitude 

and alternating sign lying on the corners of a square    cemVE07.m 

 

 

 



37 
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Example 8:   [1D] quadrupole of 3 charges in a straight lines      -q   

+2q   -q                      cemVE08.m 

Q(1) = - 10x106  C     Q(2) = + 20x106  C      Q(3) = - 10x106  C 
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Q(1) = - 10x106  C     Q(2) = + 20x106  C      Q(3) = - 10x106  C 
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Q(1) = - 10x106  C     Q(2) = + 20x106  C      Q(3) = - 10x106  C 
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Q(1) = - 10x106  C     Q(2) = + 20x106  C      Q(3) = - 10x106  C 
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Example 9:   Four equal charges at the corners of a square      

cemVE09.m 
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Example 10:   A short capacitor model             cemVE10.m 

We can model a short capacitor as a row of positive charges and 

negative charges. For the plots shown below there are 50 positive 

circular charges and 50 circular negative charges.  Each circular 

charge has a radius 0.0500a =  m and the magnitude of the charge is 

5

0
1.0000 10Q

−
=   C.  
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You can check numerical values using the Data Cursor or from the 

Command Window. We can test the relationship /E V x    near 

the centre of the region between the charged plates.   

 
-1

0 0.1 m 1.607 MV

0 0.1 m 1.607 MV

/ 16.1 MV.m

x y V

x y V

E V x

= = =

= = − = −

=   =
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From the calculation of E from the superposition principle  

-1
15.8 MV.mE =  
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The starting positions for the streamlines need to be chosen carefully 

to give a good representation of the pattern of electric field lines.  


