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Arguably the most broad-based evolution in the world view of 

science in the twentieth century will be associated with chaotic 

dynamics.  

    S.N. Rasband Chaotic Dynamics of nonlinear Systems. 

 

 

DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS 

 

http://www.physics.usyd.edu.au/teach_res/mp/mscripts/ 
 
chaos10.m     Linear systems  
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chaos11.m    Linear and nonlinear systems 

The script lets you study the dynamics of linear and nonlinear 

systems by the method of phase plane analysis. The state 

variables x and y are found by solving a pair of coupled first 

order differential equations with constant real coefficients 

using a finite difference method. A phase plane is plotted 

showing the vector field of the state variables and the 

nullclines.  Parameter are set in the INPUT section of the script. 

Sample differential equations are specified and selected by 

using the variable flagC. You can edit an equation or add new 

equation. However, the script must be changed in a few places 

in each of the switch/case statements. For stability, the number 

of calculations N needed is enormous and N may have to be 

greater than 50e6. The duration of a simulation is given by 

tMax (if too large, the solution may become unstable). The 

dimensions of the phase space plot is LxL. The initial values for 

the state variables x and y are specified using the ginput: click 

to select the initial values of x(1) and y(1) in the phase space 

plot Figure Window. The number of trajectories plotted is given 

by numT. When numT = 1, only one trajectory is plotted. When 

all the trajectories have been plotted, time evolution of x & y 

are plotted for the last set of initial conditions. 

 

 
% Choose coupled D.E  ********************************* 
 flagC = 5; 
% 1 dx/dt = x*(x^2-1)    dy/dt = y   
% 2 dx/dt = (x+1)*y      dy/dt = y 
% 3 dx/dt = x - y        dy/dt = 2x - y -x^2 
% 4 dx/dt = (2+x)*(-x+y) dy/dt = (2-x)*(x+y) 
% 5 dx/dt = x - 2y -1    dy/dt = 2x - 3y -3     linear 
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PHASE PLANE ANALYSIS 

 

The pair of coupled first order differential equation are 

expressed in terms of the two state variables ( )x t  and ( )y t  as 

 (1) 
 

 

( ) / ( ), ( )

( ) / ( ), ( )

d x t dt f x t y t

d x t dt g x t y t




 

  

Our starting point to look at the dynamics of a system is to set 

up a phase plane. A phase plane plot for a two-state variable 

system consists of curves of one state variable versus the other 

state variable  ( ), ( )x t y t , where each curve called a trajectory 

is based on a different initial condition. The graphical 

representation of the solutions is often referred to as a phase 

portrait. The phase portrait is a graphical tool to visualize how 

the solutions of a given system of differential equations would 

behave in the long run.   

 

We can set up a vector field which is constructed by assigning 

the following vector to each point on the x y  plane: 

  
/

/

d x dt

d y dt

 
 
 

  

 

The slope of these vectors is 

  
/

/
/

d y dt
m d y d x

d x dt
    
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Thus, the vector field can be computed without knowing the 

solutions x  and y . This allows you to visualize the solution of 

the system for any given initial condition  ( 0), ( 0)x t y t   as 

the vector field must be tangential to any solutions at all point 

of the system.  

 

Next we can plot the x  and y  nullclines of the phase plane 

plot, where the nullclines are curves lines determined by: 

 x -nullcline      / 0d x dt   

        y -nullcline      / 0d y dt   

 

Theses nullclines lines show the points where x  is independent 

of time t  and the points where y  is also no longer changing 

with time. The interscetion of any two nullclines represent 

steady-state values of fixed equililrium points of the system 

and such points are called critical points (figure 1). 
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Fig. 1.   Vector field (quiver function) and x and y nullclines. 

The arrows point in the direction of increasing time t. The 

critical point is at the intersection of the two nullclines. 
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LINEAR SYSTEMS 

 

http://www.physics.usyd.edu.au/teach_res/mp/doc/chaos10.pdf 

 

Phase plane analysis is one of the most important techniques 

for studying the behaviour of nonlinear systems, since there are 

usually no analytical solutions. 

 

Consider the solutions to a pair of coupled first order 

differential equations with real and constant coefficients for 

the state variables  ( ), ( )x t y t  of the general form 

 (2) 11 12 13

21 22 23

/

/

dx dt k x k y k

dy dt k x k y k

  

  
  

  

 

If   13 230 0k k   then we have a homogeneous system, 

otherwise an inhomogeneous system.  

 

The solution to the homogenous system can be expressed in 

terms of the two 2x2 matrices for the eigenfunctions a and 

eigenvalues b of the matrix K. The solutions can be written as 

 (3A) 
   

   

11 22

11 22

1 11 2 12

1 21 2 22

( )

( )

b t b t

b t b t

x t C a e C a e

y t C a e C a e

 

 
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where C1 and C2 are determined by the initial conditions 

 ( 0), ( 0)x t y t  .  

 

The final solution is expressed as 

 (3B) 
11 22

11 22

1 11 12

2 21 22

( )

( )

b t b t

b t b t

x t c e c e

x t c e c e

 

 
 

 
The eigenfunctions a and eigenvalues b are computed using the 

function eig 

  [a, b] = eig(K) 

 
The coupled differential equations (equation 2) are specified by 

the matrix K and the solution for the two state variables 

depends upon the eigenvalues b and eigenfunctions a of the 

matrix K.  The nature of the eigenvalues (real / imaginary) 

determine the type of equilibrium for the system. If the 

eigenvalue is greater than zero, then the term increases 

exponentially with time and if less than zero, the term 

decreases exponentially with time, since a solution is of the 

form:         1 2
1 2( )

b b
x t c e t c e t   

 where b1 and b2 are the eigenvalues. 

 
0

0 0

bt

bt

b t e

b t e

  

  
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The larger the eigenvalue, the faster the response and the 

smaller the value of the eigenvalue, the slower the response. 

Due to the two-dimensional nature of the parametric curves, 

we will classify the type of those critical points by the shape of 

the trajectories about the critical point. 

 

For distinct real eigenvalues, the trajectories either move away 

from the critical point to an infinite-distant away (when the 

eigenvalues are both positive) or move toward from infinite-

distant out and eventually converge to the critical point (when 

eigenvalues are both negative). This type of critical point is 

called a node. It is asymptotically stable if eigenvalues are both 

negative, unstable if both are positive values.  

 

Classification of various trajectories is descripted in the 

following table. 
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Eigenvalues 

b1  b2 

Description Behavior Stability 

1 2 0b b    
real, distinct, 

both positive 

node - 

outgoing 

unstable 

1 20 0b b   
real, distinct, 

opposite sign 

saddle point unstable 

1 2 0b b    
real, distinct, 

both negative 

node- ingoing stable 

1 2 0b b    
real, repeated 

positive 

node - 

degenerate 

unstable 

1 2 0b b    
real, repeated, 

negative 

node - 

degenerate 

stable 

0

R I

R

b b ib

b

 


  

complex, 

positive real 

part 

spiral - 

outgoing 

unstable 

0

R I

R

b b ib

b

 


 

complex, 

negative real 

part 

spiral -ingoing stable 

0I Rb ib b     
complex - pure 

imaginary 

center  

ellipse 

stable 

 

The above description of the behavior of the trajectories near a 

critical point not only applies to the linear homogeneous 

system but also applies to linear inhomogeneous systems and 

nonlinear systems.  
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NONLINEAR SYSTEMS 

 

When we have a pair of nonlinear coupled differential 

equations, then the local behavior near a critical point in nearly 

the same as for the linear case.  However, away from the 

critical points, the behavior can become much more complex. 

 

The study of nonlinear systems using phase plane analysis is 

illustrated in the following examples. 
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Simulation #1    LINEAR SYSTEM 

flagC = 5 

 

Fig. 1.1.  The phase portrait for the linear case (numT = 20). This 

phase portrait is identical to figure 2.3 in the document for the 

linear case where the differential equations were solved 

analytically (repeated real eigenvalues 1 2 1b b    and the 

critical point at (3, 1) ). The critical point is an asymptotically 

stable improper (degenerate) ingoing node. 
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Fig. 1.2.   The phase portrait for a single trajectory (numT = 1). 

 

Figures 1.3, 1.4 and 1.5 show the time evolution of the two 

state variables x and y for increasing values of the number of 

calculations N. If N to too small, then the computations become 

unstable. Increasing the value of N improves the results of the 

computation. However, everything slows down by increasing 

the N value. You need to experiment with the values of L, N and 

tMax to get the best results. The state variables x and y evolve 

with time t to the critical point (fixed equilibrium point) at (3,1).  
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Fig. 1.3.  N = 50e4.  The solutions become unstable with time. 

 

 

Fig. 1.4.  N = 50e5.  The solutions start to be become unstable 

near the end of the simulation time. 
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Fig. 1.5.  N = 50e6.  For the simulation time of 15 s, the solution 

is stable, and the state variables x and y approach the critical 

point (3,1). 
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Simulation #2    NONLINEAR SYSTEM 

flagC = 1 

 

Fig. 2.1.   There are three critical points (given by the 
intersection of the two nullclines: 

(-1, 0)   outgoing node  
(0, 0)    saddle point  
(1, 0)    outgoing node  
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Fig 2.2.  Single trajectory and the time evolution of the state 

variables. 0t x y    
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 Simulation #3    NONLINEAR SYSTEM 

flagC = 2 

 

Fig. 3.1.   There are two critical points: 
(0, 0)    saddle point  
(-1, -3)  ingoing node  
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Fig. 3.2.   Single trajectory and the time evolution of the state 

variables near the saddle point (0, 0). t x y    
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Fig 3.2.  Single trajectory and the time evolution of the state 

variables for the ingoing node at (-1, -3). 

1 3t x y    
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Simulation #4    NONLINEAR SYSTEM 

flagC = 3 

 

Fig. 4.1.   There are two critical points: 
  (0, 0)   center – closed periodic orbits about the center point 
  (1, 1)   saddle point  
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Fig 4.2.  Single trajectory and the time evolution of the state 

variables for the periodic orbit about the center at (0, 0).  
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Fig 4.3.  Single trajectory and the time evolution of the state 

variables near the saddle point at (1, 1).   

t x y     
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Simulation #5     NONLINEAR SYSTEM 

 

 

 
Fig. 5.1.  There are three critical points 

 (-2, 2)     outgoing node 

   (0, 0)      saddle point 

 (2, 2)      ingoing node 
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Fig. 5.2.   Trajectory near the outgoing node at (-2, 2) and near 

the ingoing node at (2, 2). 

2 2t x y    
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By observing the plotting of a few trajectories for different time 

intervals you should observe the fact the time rate of change 

near a critical point is much slower than away from a critical 

point (N.B. the time rate of change of both state variables is 

zero at a critical point). Figure 5.3 shows two trajectories for a 

1.0 s time interval. 

 

 

Fig. 5.3.   The time rate of change of the two state variables is 

much slower near a critical point and faraway. 
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