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DOING PHYSICS WITH MATLAB 

 

BURSTING NEURON MODEL USING TWO AND THREE 

COUPLED FIRST ORDER DIFFERENTIAL EQUATIONS 

 

Ian Cooper 

matlabvisualphysics@gmail.com 

 

MATLAB         Download Directories and Scripts 

           

https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSv

UMc89ksF9Jb 

 

https://github.com/D-Arora/Doing-Physics-With-

Matlab/tree/master/mpScripts 

 

cnsHindmarshB.m 

Uses ode45 function to solve two / three coupled first order equations 

which describe a bursting neuron.  

 Solution Variables 

     y(:,1)  membrane potential v 

     y(:,2)  recovery variable w  

     y(:,3)  adaptation current z 

https://d-arora.github.io/Doing-Physics-With-Matlab/
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Input Variables  

    Simulation time: tSpan 

    Initial conditions:  y0 = [v(0) w(0) z(0)] 

    Current pulse:  K(7)    pulse height  Imax     

                            K(11)   pulse on  / K(12)  pulse off 

                            K(12) - K(11)  pulse duration 

   2 coupled ODEs constants: K(1) to K(6) 

   3 coupled ODEs constants: K(9)  K(10) 

   K(8) adaptation variable: K(8) = 0 --> 2 coupled ODEs model  

                   

For different models, it may be necessary to make changes to the 

Script 

 

Outputs  

• Time evolution plots 

• PHASE PLANE ANALYSIS: phase space plot (v-w trajectory) 

       v - w vector field, v and w nullclines 

       Equilibrium (critical) points  vC and wC 
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ode45 

[t,y] = ode45(@(t,y) FNode(t,y,K), tSpan,y0); 

 

function dydt = FNode(t,y,K) 

% y(1) == v; y(2) == w;  y(3) == z 

  Imax = 0; 

  if t > K(11); Imax = K(7); end 

  if t > K(12); Imax =   0; end  

    

dydt(1) = K(1)*y(2)+K(2)*y(1)^3+K(3)*y(1)^2+Imax+y(3); 

dydt(2) = K(4) + K(5)*y(1)^2 + K(6)*y(2); 

dydt(3) = K(8)*( K(9)*(y(1) - K(10)) - y(3) ); 

dydt = dydt'; 

end 

 

 

This document is based upon the paper by J. L. Hindmarsh and R. M. 

Rose 

A model of neuron bursting using three coupled first order differential 

equations 

Proceedings of the Royal Society of London. Series B, Biological 

Science, Volume 221, Issue 1222, (Mar 22, 1984)87-102. 
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NEURON BURSTING MODEL 

The Hindmarsh and Rose model considers the following system of 

three coupled ODEs to generate action potentials 

(1)               

( )( )

3 2
1 2 3

2
4 5 6

8 9 10

extv k w k v k v I z

w k k v k w

z k k x k z

= + + + −

= + +

= − −

 

where v represents the membrane potential, w is a recovery variable,  

Iext is an applied external current stimulus, and z is an adaptation 

current, and k1 to k10 are constants. The constant k10 is determined 

from the v-w coordinates (vC1, wC1) of the stable equilibrium point 

(left most) of the model for I(t) = 0 and without adaption, k10 = vC1. 

The external current stimulus Iext (t) is specified by k7 for its height 

and pulse duration by k11 (on) and k12 off.  

 

If z(0) = z0 = 0 and k8 = 0 which gives 0z = , then only two coupled 

equations are necessary to describe the system. 

 

        (2)              
3 2

1 2 3

2
4 5 6

extv k w k v k v I

w k k v k w

= + + +

= + +
 

 

This model is similar to the Fitzhugh-Nagumo model except that the 

time rate of change of the recovery variable w  includes a quadratic 

term rather than a linear term. 
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Figure 1 shows an intracellular recording of a neuron in the visceral 

ganglion of the small snail, lymnaea stagnalis when it was stimulated 

by a short depolarizing current stimulus. After the current excitation, 

a series of action potentials are generated (bursting). The cell is 

usually silent, but when depolarized for about 100 ms, it spikes 

several times and then continues to spike even after the cessation of 

the current stimulus before the membrane potential falls to a value 

less than its initial value. 

 

 

Fig. 1.  Intracellular recording of a neuron in the visceral ganglion of 

the small snail, lymnaea stagnalis [Hindmarsh & Rose].  
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The neuron bursting model can be used to simulate a bursting neuron 

and the results of the model can be compared with recordings of 

neurons to external current stimuli as shown in figure 1. The set of 

equations 1 are solved in Matlab using the ode45 function. The 

solution of the set of equations 1 give the time evolution of the three 

variables: membrane potential v, recovery variable w and the 

adaptation current z in response to an external current stimulus Iext. 

 

The firing behaviour of a neuron can be better understood more easily 

by examining the v-w phase space plot which shows the vector field 

by v-w arrows of unit length, the v-w trajectory, the v and w nullclines, 

the equilibrium (critical) points vC and wC, the initial conditions v0 and 

w0 and the final values for v(t) and w(t). 

 

The nullclines for v and w are obtained from equation 1 by setting 

0v =  and 0w =   

     v-nullcline (cubic function in v) 

      (2A)      3 2
1 2 3 0extk w k v k v I+ + + =  

 

    w-nullcline (quadratic function in v) 

      (2B)       2
4 5 6 0k k v k w+ + =  
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The v-nullcline is a function of Iext(t). When Iext(t) changes, the 

position of the v-nullcline would change in the phase space plot. To 

overcome this problem, the v-nullcline and equilibrium points vC and 

wC are calculated by setting Iext(t) = 0 and with zero adaptation current, 

z(t) = 0. 

  

The equilibrium points vC and wC are the points of intersection of the 

two nullclines where 0v =  and 0w = . The critical points are found 

using the Matlab symbolic function vpasolve. There are three 

equilibrium points, the stable, saddle, and unstable shown in figure 2 

when Iext = 0 and z(t) = 0. When the peak external current is increased 

to Imax = 1.00, there is only the unstable equilibrium point as shown in 

figure 2. 

 

The two coupled ODEs model will first be used, followed by the three 

coupled ODEs model.  

 

My simulation results are similar but different from the results given 

by Hindmarsh and Rose when essentially the same model parameters 

were used. Not sure why the discrepancy !!!  
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Fig. 2   v-w vector field showing the three equilibrium points (black 

dots: stable, saddle and unstable) when Iext = 0 and z = 0 at the 

intersection of the v nullcline and the w nullcline. When the external 

current increases to Iext = 1.00, the v-nullclines is lower and the only 

intersection point of the two nullclines is the unstable equilibrium 

point (blue dot). 

 

 

TWO COUPLED ODEs NEURON BURSTING MODEL 

By setting the adaptation parameter to zero ( )8 0k = , then the two 

coupled ODEs (equation 2) describe the system. The solution of the 

two coupled ODEs depends upon the initial conditions ( )0 0,v w  and 

the external current stimulus Iext(t) for a given set of model parameters 

k1 to k6.  
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Simulation 1    Iext(t) = 0 

Model parameters 

Initial conditions 

        ( ) ( ) ( )0 0 0 0 0 01.5, 0 0, 8 1, 18v w v w v w= − = = = − = + = −  

Constants 

             k1 = 1    k2 = -1    k3 = 3    k4 = 1     k5 = -5    k6 = -1 

     Current stimulus 

             k7 = 0    k11 = 50    k12 = 70 

     Adaptation current 

     k8 = 0    k9 = 0    k10 = 0.84 

     Equilibrium points 

( ) ( ) ( )1.62, 12.09 1.00, 4.00 0.62, 0.91C C C C C Cv w v w v w= − = − = − = − = + = −

 

 

We can consider the simulation when the external current stimulus is 

set to zero, Iext(t) = 0. For the case in which Iext(t) = 0, there are three 

equilibrium (critical) points and are shown as black dots in figure 3. 

Figure 3 shows the phase space plot which includes the v-w vector 

field, the v and w nullclines, the equilibrium points, the initial points 

and finals points. The equilibrium point at ( )0.62, 0.91C Cv w= + = −  is 

unstable. If the initial conditions ( )0 0,v w  are set near this equilibrium 

point, the v-w trajectory will be attracted to the limit cycle 

surrounding this unstable equilibrium point and the neuron will fire 

repetitively even without any external current stimulus.  
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Fig. 3   Phase space plot for three different initial conditions. There 

are three equilibrium or critical points (black dots) at the intersection 

of the v-nullcline (red) and w-nullcline (magenta) with Iext = 0. The 

green dots indicate the initial conditions ( )0 0,v w used in the 

simulation and the red dots the final values for v and w.  

 

 

The equilibrium point at ( )1.62, -12.09C Cv w= − =  is a stable. The 

equilibrium point at ( )1.00, -4.00C Cv w= − =  is a saddle point. If the 

initial conditions ( )0 0,v w  are set near the saddle point, then the v-w 

trajectory will either be attracted to the limit cycle and a spike train 

will occur or to the stable equilibrium point and the neuron will not 

fire (figure 4). 
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Fig. 4   Time evolution plot for the current stimulus Iext  = 0, 

adaptation current z = 0, membrane potential v and recovery variable 

w.  The neuron fires repetitively even though the external current 

stimulus is zero.    ( )0 01.5, 0v v= − =  
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Fig. 5   Time evolution plots for the current stimulus Iext  = 0, 

adaptation current z = 0, membrane potential v and recovery variable 

w.  The neuron does not fire. ( )0 00, 8.0v v= = −  

 

 

Thus, the phase space is divided into two regions. Depending on the 

initial conditions, the trajectory will be attracted to the limit cycle and 

the cell fires continuously or the trajectory is deflected to the stable 

equilibrium point and no firing occurs. 
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Simulation 2     Square pulse current stimulation 

Model parameters 

Initial conditions 

        ( )0 00.50, 6.0v v= = −  

Constants 

             k1 = 1   k2 = -1   k3 = 3   k4 = 1    k5 = -5     k6 = -1 

     Current stimulus 

             k11 = 50   k12 = 70 

     Adaptation current 

            k8 = 0      k9 = 0    k10 = 0.84 

     Equilibrium points 

( ) ( ) ( )1.62, 12.09 1.00, 4.00 0.62, 0.91C C C C C Cv w v w v w= − = − = − = − = + = −

 

 

Figure 6 shows the phase space plot and time evolution plots for zero 

external current stimulus given the initial conditions.

( )0 00.50, 6.0v v= = − .  The system evolves to the stable equilibrium 

point ( )1.62, 12.09C Cv w= − = − and the neuron fails to spike. However, 

figure 7 shows that if the neuron is excited by a square pulse of height 

1.00 and duration 25 ms with the same initial conditions 

( )0 00.50, 6.0v v= = − , then the v-w trajectory is now attracted to the 

limit cycle centred on the single unstable equilibrium point 

( )00.84, 2.52Cv v= = − . The neuron fires rapidly during the time of 

the pulse. After a short delay following the termination of the current 

stimulus, the neuron fires repetitively at a constant rate. The rise in 

the membrane potential v is caused by external current stimulus which 

depolarized the neuron.  



14 
 

 

 

Fig. 6   Phase space plot and time evolution plots for zero current 

stimulus. The neuron does not fire and the v-w trajectory is attracted 

to the stable equilibrium point. ( )0 00.50, 6.0v v= = −  
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Fig. 7   Phase space plot and time evolution plots. The neuron is 

stimulated by a current pulse of height 1.0 and duration 25 ms. The 

neuron fires rapidly during the pulse and then fires periodically. The 

v-w trajectory is attracted to the unstable equilibrium point. 

( )0 00.50, 6.0v v= = −  

 



16 
 

If the current stimulus increases, then v-nullcline will move down and 

move up when the current stimulus decreases. So, if the current 

stimulus changes with time, this could result in a transition between 

one or three equilibrium points and the cell either repetitive firing or 

no firing. 

 

Simulation 3     Square pulse stimulation – limited firing 

Model parameters 

Initial conditions 

        ( )0 00.50, 6.0v v= = −  

Constants 

             k1 = 1   k2 = -1   k3 = 3   k4 = 1    k5 = -5   k6 = -1 

     Current stimulus 

             k11 = 50   k12 = 70 

     Adaptation current 

            k8 = 0     k9 = 0    k10 = 0.84 

     Equilibrium points 

( ) ( ) ( )1.62, 12.09 1.00, 4.00 0.62, 0.91C C C C C Cv w v w v w= − = − = − = − = + = −

 

 

When the neuron is stimulated by a square current pulse of height 

1.00 and duration 25 ms and with initial conditions ( )0 00, 8.0v v= = − , 

the neuron responses by only firing during the pulse. After the 

cessation of the current stimulus, both the membrane voltage and 

recovery variable monotonically decrease to their resting values 

(figure 8). 
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Fig. 8   Phase space plot and time evolution plots. and the neuron 

stimulated by a current pulse of height 1.0 and duration 25 ms. The 

neuron fires only for the duration of the current stimulus.  

                ( )00.84, 2.52Cv v= = −     ( )0 00, 8.0v v= = −  
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The Hindmarsh and Rose’s two coupled model can give an adequate 

qualitative representation which described the bursting behaviour 

observed in some neurons. The two coupled ODEs model can 

reproduce the initial burst of repetitive firing of observed in the cell 

the lymnaea visceral ganglion except that it did not fire indefinitely, 

but slowed down and was terminated by a slow after-hyperpolarizing 

wave (figure 1). A simple way to introduce this effect into the model 

is by adding an adaption slow current that hyperpolarizes the cell. 

This leads to a set of three coupled ODEs model given by equation 1. 
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THREE COUPLED ODEs NEURON BURSTING MODEL 

Figure (1) shows an intracellular recording of a neuron in the visceral 

ganglion of the small snail lymnaea stagnalis when it was stimulated 

by a short depolarizing current stimulus. After the current excitation, 

a series of action potentials are generated (bursting). The cell is 

usually silent, but when depolarized for about 100 ms, it spikes 

several times and then continues to spike even after the cessation of 

the current stimulus for some time. The firing sequence is terminated 

with a slow after-hyperpolarizing wave. This may be the result of a 

slowing increasing outward current which produced the repolarization. 

 

 

Fig. 1.  Intracellular recording of a neuron in the visceral ganglion of 

the small snail lymnaea stagnalis [Hindmarsh].  

 

However, in the two couple ODEs, once the firing is initiated, the cell 

continuous to undergo repetitive firing. To account for the 

repolarization of the cell after firing, we can introduce an adaptation 
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current z into the model to give three coupled ODEs (equation 1). The 

depolarizing current depends upon the values of k8 and k9. 

 

Simulation 4     Square pulse stimulation – adaptation 

Model parameters 

Initial conditions 

        ( )0 01.6180, 12.0902, 0 0v v z= − = − =  

Constants 

             k1 = 1   k2 = -1   k3 = 3   k4 = 1    k5 = -5   k6 = -1 

     Current stimulus 

             k11 = 50   k12 = 75 

     Adaptation current 

            k8 = …     k9 = 1    k10 = -1.680 

     Equilibrium points (I(t) = 0, z(t) = 0) 

( ) ( ) ( )1.62, 12.09 1.00, 4.00 0.62, 0.91C C C C C Cv w v w v w= − = − = − = − = + = −

 

 

Figures 9 and 10 shows the response of the neuron to a short current 

stimulus. Figure 9 is for the case of no adaptation (k8 = 0) where the 

response is a persistent spike train.  
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Fig. 9   Time evolution plots of the stimulus current I, adaptation 

current z, membrane potential v and recovery variable w for a short 

current stimulus and with no adaptation (k8 = 0). The continuous spike 

train of action potential is generated. 

 

When the adaption current is added (k8 = 0.001) to the model, the 

response is an isolated burst of action potential and the membrane 

potential has similar characteristics of the intracellular recording of a 
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neuron in the visceral ganglion of the small snail lymnaea stagnalis 

shown in figure 1.  

 

Fig. 10   Time evolution plots of the stimulus current I, adaptation 

current z, membrane potential v and recovery variable w for a short 

current stimulus and with adaptation (k8 = 0.001, k9 = 1.00). A burst 

of action potentials is triggered. 
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The strength of the adaptation is controlled by the adaptation variable 

k9. As k9 is increased, the repolarizing current z increases and the 

shorter the bursting activity of the neuron becomes and if k9 is 

decreased, firing occurs for a longer time as shown in figure 10 

(k9  = 1.00), figure 11 (k9 = 0.70) and figure 12 (k9 = 4.00)  

 

Fig. 11   Time evolution plots of the stimulus current I, adaptation 

current z, membrane potential v and recovery variable w for a short 

current stimulus and with adaptation (k8 = 0.001, k9 = 0.70). A burst 

of action potentials is triggered that is longer than the burst with k9 = 

1.00. 
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Fig. 12   Time evolution plots of the stimulus current I, adaptation 

current z, membrane potential v and recovery variable w for a short 

current stimulus and with adaptation (k8 = 0.001, k9 = 4.00). A burst 

of action potentials is triggered that is much shorter than the spike 

train with k9 = 1.00. 

 

A current stimulus results in a lowering of the v nullcline compared 

with the instance when I(t) = 0.  For the example where Imax = 1.00 as 
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shown in figures 10 and 13, there is no longer three equilibrium points

( ) ( ) ( )1.62, 12.09 1.00, 4.00 0.62, 0.91C C C C C Cv w v w v w= − = − = − = − = + = −

but only one equilibrium point ( )0.84, 2.52C Cv w= = −  which is 

unstable. 

 

Fig. 13   Phase space plot of figure 10 for a short current stimulus 

with adaptation and parameters (Imax = 1.00, k8 = 0.001, k9 = 1.00).  

 

We can explain the bursting sequence using the details shown in a 

phase space plot (figure 13) and its corresponding time evolution plot 

(figure 10). Consider the model neuron, initially at rest with initial 

conditions ( )1.6180, 12.0900, (0) 0, (0) 0C Cv w I z= − = − = =  and 

there will be three equilibrium points 

( ) ( ) ( )1.62, 12.09 1.00, 4.00 0.62, 0.91C C C C C Cv w v w v w= − = − = − = − = + = −
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A short current pulse stimulus is applied to the neuron. The current 

stimulus causes the v nullcline to be displaced downward such that the 

only equilibrium point is the unstable one ( )0.84, -2.52C Cv w= = . As 

a consequence, the phase point moves into the limit cycle and each 

time an action potential occurs, the adaptation current z is 

incremented and the v nullcline will be displaced upward on 

successive cycles. The firing rate will decrease as the v nullcline and 

w nullcline become closer together at the saddle point 

( )1.00, 4.00C Cv w= − = −  until the two nullclines cross each other 

and the firing stops and the phase point slowly moves downward in 

the narrow channel between the v nullcline and the w nullcline 

towards the stable equilibrium point ( )1.62, 12.09C Cv w= − = −  as 

shown in figure 14. This slow left and downward movement of the 

phase point gives rise to the hyperpolarizing of the membrane 

potential where the value of the membrane potential v is below the 

initial value v0. After a long time, the adaptation current z will relax 

back to zero and the final membrane potential v will move back to its 

initial value v0. 
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Fig. 14   Phase space plot. The three black dots show the positions of 

the three equilibrium points ( )(0) 0, (0) 0I z= = : stable 

( )1.62, 12.09C Cv w= − = − , saddle ( )1.00, 4.00C Cv w= − = − , and 

unstable ( )0.62, 0.91C Cv w= + = − . The magenta curve is the w 

nullcline and the red curve is the v nullcline when I = 1.00. The green 

dot is located at the point ( )0 01.62, 12.09v w= − = − which is the stable 

equilibrium point and the red dot the final v-w position.  

 

The snail recording (figure 1) and the model (figures 10 and 15) both 

show an interesting feature. After the cessation of the bursting, the 

neuron becomes hyperpolarized with the membrane potential more 

negative than its initial value (-1.6180 > -1.6816). However, the 

membrane potential v will very slowly return to its starting value 

(stable equilibrium point ( )1.6180, ( ) 0, ( ) 0Cv I t z t= − = = ). 



28 
 

 

Fig. 15   Expanded view of the membrane potential which shows the 

hyperpolarizing effect after the cessation of the bursting activity. 

 

We can plot a three-dimensional plot of the three variables (figure 16): 

membrane potential v. recovery variable w, and adaptation current z. 

The adaptation variable changes more slowly the membrane potential 

v. and recovery variable w.  

 

Fig. 16   [3D] phase space plot of membrane potential v. recovery 

variable w, and adaptation current z.  

 (Imax = 1.00, k8 = 0.001, k9 = 1.00, tmax= 500 ms) 
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Simulation 5   BURST GENERATION 

We can consider the response of the membrane potential to a step 

current stimulus. The model parameters are 

Initial conditions 

        ( )0 01.6180, 12.0902, 0 0v v z= − = − =  

Constants 

             k1 = 1   k2 = -1   k3 = 3   k4 = 1    k5 = -5   k6 = -1 

     Current stimulus 

             k11 = 50   k12 = 5002 

     Adaptation current 

            k8 = 2x10-3    k9 = 2    k10 = -1.6180 

     Equilibrium points (I(t) = 0, z(t) = 0) 

( ) ( ) ( )1.62, 12.09 1.00, 4.00 0.62, 0.91C C C C C Cv w v w v w= − = − = − = − = + = −

 

The adaptation current z acts as a hyperpolarizing current that rises 

and falls triggering a sequence of isolated bursts separated by 

hyperpolarized periods as shown in figure 17. Different burst 

generation patterns are obtained by using different values for the 

parameters Imax and k9. This burst generation pattern can be explained 

in terms of the v-w phase space plot as was done for figure 14. 
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Fig. 17   Burst generation  (k8 = 2.0x10-3, k9 = 2).   

 

CONCLUSION 

The bursting neuron model only gives a qualitative explanation of the 

bursting behaviour of real neurons and it may be difficult to relate 

model parameters to biological features. However, the model does 

provide insights into the behaviour of why neurons can exhibit 

bursting patterns. 


