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 DOING PHYSICS WITH MATLAB 

FOURIER ANALYSIS 

FOURIER TRANSFORMS 

                       
 

Ian Cooper 

matlabvisualphysics@gmail.com 

 

DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS 

   GitHub 

   Google Drive 

 

 

maths_ft_02.m 

mscript used to calculate the Fourier transform, the power 

spectral density and the inverse Fourier transform functions by 

the direct integration of the Fourier integrals using Simpson’s 

rule. A wide variety of functions, sound files and data files (eg 

ecg) can be investigated. All parameters can be changed within 

the mscript. 

 

Wave and mat Files 

  wav_S1000_1008.wav 

  audio440.wav 

  audioGuitar1.wav 

  audioClarinet1.wav 

  audioVoice1.wav 

  Train.wav 

  ecg.mat 
 
 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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The Script calculates the Fourier transform H(f) for different 

signal functions h(t). The signal function is selected by the 

variable flagF (flagF = 1, 2, … , 17): 

 
%  1   Gaussian function 
%  2   Exponential function 
%  3   Sinusoidal function 
%  4   Superposition of sinusoidal functions 
%  5   Square Wave 
%  6   Sawtooth function 
%  7   Single square pulse 
%  8   Damped sinusoidal function 
%  9   ECG 
% 10   Beats 
% 11   Beats: audio file 
% 12   Audio file: 440 Hz signal 
% 13   Audio file: Guitar 220 Hz 
% 14   Audio file: Clarinet 220 Hz 
% 15   Audio file: Voice 220 Hz 
% 16   Audio file: train whistle 
% 17  Digital Filtering 
 
It is very easy to add other functions to the Script 
 
Inputs for each function 
Enter function or load data file h 

Time domain: number of grid points for time (must be an odd 
number) nT; start time tMin = 0; end time tMax 
Frequency domain: number of grid points for frequency (must 
be an odd number) nF; start time fMin = 0; end time fMax  
Plots: XLIMS = [tMin  tMax]; XTICKS = tMin:dt:tMax;  
           XLIMSF = [fMin fMax]; XTICKSF = fMin:df:fMax;  
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Audio files  .wav 
 
The signal for the audio recording is obtained using the load 

command 

 [signal, Fs] = audioread('audio440.wav');  

The variable signal is the input function of time. Fs is the 

sampling frequency or frequency rate. The time interval dt 

between the signal data points is thus   

 dt = 1/Fs; 

The input variable h is extracted from the signal function 

 h = signal (h1:h2);  

where h1 and h2 are the start and end indices respectively. 

The number of time steps nT is given by the length of h 

 nT = length(h);  

and the maximum time span tMax is 

 tMax = (nT-1)*dt; 

The code to play the audio recording is 

 sound(signal, Fs);   
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Introduction 

Fourier transform methods (or spectral methods) are used in a 

very large class of computational problems. Many physical 

processes can be described in the time domain by the values of 

a function ( )h t  or else in the frequency domain ( )H f . The 

function ( )H f  is usually complex function specified by its 

amplitude and phase. It is useful to think of ( )h t and ( )H f  as 

being two different representations of the same function. One 

goes back and forth between these two representations by 

means of the Fourier transform equations 

 

 (1) 
(2 )

( ) ( )
i f t

H f h t e dt


−
=   

 (2) 
(2 )

( ) ( )
i f t

h t H f e df
 −

−
=    

 

Equation 1 is the Fourier transform and equation 2 gives the 

inverse Fourier transform. If t is measured in seconds, then the 

frequency f is measured in hertz. It is more straight forward to 

use the frequency f rather than the more commonly used 

angular frequency   ( )2 f  .  

     The total power in a signal is the same whether we compute 

it in the time domain or in the frequency domain. This result is 

called Parseval’s theorem  
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 (3) 
2 2

( ) ( )Total Power h t dt H f d f
 

− −
= =    

 

If one wants to compute how much power there is the 

frequency interval between f and df, one does not usually 

distinguish between negative and positive values of f, but 

rather regards f as varying from zero frequency or DC ( )0f =  

to f → . In such cases, one defines the one-sided power 

spectral density PSD of the function ( )h t  as 

 (4) 
2 2

( ) ( ) ( )psd f H f H f= + −   

 

If ( )h t is a real function, then 

 (5) 
2

( ) 2 ( ) 0psd f H f f=     

 (6) 
2

0
2 ( )Total Power H f d f


=   

 
Usually, the Fourier transforms given by equations 1 and 2 are 

calculated by the fast Fourier transform method. There are 

Matlab functions fft and ifft that can be implemented to find 

the Fourier transforms. However, they are not easy to use as 

the sampling rate and frequency domain are not independent.  

 

Historically, the fast Fourier transform is used because of the 

speed of the calculations is much faster than the direct 
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evaluation of the Fourier integrals.  But, with the speed and 

memory of modern computers and using software such as 

Matlab, the computation of the Fourier integrals can be by the 

direct integration without any problems, thus, Fourier Analyse 

can be made simple. 

 

Matlab 

The time and frequency domains are specified by the variables 

for the time interval and number of samples: 

 time domain                tMin tMax nT   

        frequency domain     fMax fMax nF−   

 

The number of samples nT and nF must be odd numbers for 

evaluating the integrals using Simpson’s rule. Hence, the 

frequency domain includes both negative and positive 

frequencies in computing the inverse Fourier transform 

(equation 2) and the total power (equation 6). 

 

The function  ( )h t  has only non-zero values in the interval time 

interval from tMin  to tMax  

  ( ) 0 ( ) 0t tMin h t t tMax h t =  =   
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The function ( )h t  is specified by the variable flagF in the 

switch/case statements. The defined function simpson1d.m 

uses Simpson’s rule to evaluate each integral. 

 

% FOURIER TRANSFORM CALCULATIONS =============== 

   H = zeros(1,nF); hI = zeros(1,nT);HT = zeros(1,nF); 

  

% Fourier Transform  H(f) 

   for c = 1:nF 

     g = h.* exp(1i*2*pi*f(c)*t); 

     H(c) = simpson1d(g,tMin,tMax); 

   end 

   

% INVERSE Fourier Transform  hI(t)   

for c = 1:nT 

   g = H.* exp(-1i*2*pi*t(c)*f); 

   hI(c) = simpson1d(g,fMin,fMax); 

end   

 

The code for the power calculations: 

% One-sided power spectral density PSD  Ph(f) 

   psd = 2.*conj(H).*H; 

  

% Total power  PT (time domain) and PF (frequency domain)    

   PT = simpson1d(h.^2,tMin,tMax); 

   PF = simpson1d(Ph,fMin,fMax)./2; 

  

   fprintf('PT = %4.4f  \n \n',PT); 

   fprintf('PF = %4.4f  \n \n',PF); 
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EXAMPLES 

1.   Gaussian Function       ( )2
( ) exph t t= −   

 

Fig. 1.1.   A plot of a Gaussian function and its inverse Fourier 

transform. 

 

Fig. 1.2.   The Fourier transform ( )H f  of the function ( )h t  
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Fig. 1.3.   One sided power spectral density PSD, ( )hP f . Only 

the positive frequency interval is displayed. 
 

The total powers in the signal calculated from equation 3 are 

displayed in the Command Window 

 time domain             PT = 0.7071 

 frequency domain   PF = 0.7071 

 

The execution time for the computation using the tic / toc 

commands is less than one second. 

 

A narrow Gaussian signal has a wide spectrum whereas a wide  

Gaussian signal has a narrow spectrum such that t f K    

where  gives the widths and K is some positive constant. 
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Fig. 1.4.  Wide signal. 

 

Fig. 1.5.  Narrow signal. 
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Fig. 1.6. Narrow spectrum for narrow pulse. 

 

Fig. 1.7.  Wide spectrum for narrow pulse. 
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2.   EXPONENTIAL FUNCTION     ( ) 2 exp( 3 )h t t= −   

We can compute the continuous Fourier transform of an 

exponential function such as 

  3
( ) 2

t
h t e

−
=  

 

     We can test our numerical estimate of the Fourier transform 

with the analytically estimate given by 

  
( )

2
( )

3 2
H f

i f
=

+
  

 

 

Fig. 2.1.   The function h(t)  and the inverse Fourier transform  

hI(t).  
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Fig. 2.2. The Fourier transform showing excellent agreement 

between the numerical results and the analytical prediction. 

 

  

Fig. 2.3.   One sided power spectral density PSD, ( )hP f . Only 

the positive frequency interval is displayed. 
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3.   Sinusoidal functions          ( )0 0 0( ) sin 2h t A f t = +   

We can easily computer the Fourier transform of the sinusoidal 

function expressed in the form 

 

  ( )0 0 0( ) sin 2h t A f t = +   

 

 

 

Fig. 3.1. The function ( )0 0 0( ) sin 2h t A f t = +  where 

0 0 01 10 Hz 0 radA f = = = .  A = 1. The units for time t 

are seconds. 
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Fig. 3.2.   Absolute value of the Fourier transform and its 

phase. To plot the phase, uncomment the code in the 

segment for figure 2. 

 

 
 

Fig. 3.3.   Real and imaginary parts of the Fourier transform.  



  16 

 

Fig. 3.4.   One sided power spectral density PSD, ( )hP f . Only 

the positive frequency interval is displayed. 
 

     The total powers in the signal calculated from equation 3 are 

displayed in the Command Window 

 time domain             PT = 0.2000 

 frequency domain   PF = 0.2000 
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Doubling the amplitude: A = 2  

 

        time domain             PT = 0.8000 

 frequency domain   PF = 0.7999 

 

 

 

 

Fig. 3.5.   When the amplitude is doubled, the energy 

supplied by the signal increases by a factor of 4 [
2

P A ].  
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Doubling the frequency:  f = 20 Hz 

        time domain             PT = 0.2000 

 frequency domain   PF = 0.1999 

 

 

 

 
Fig. 3.6.   When the frequency is doubled, the energy supplied 
by the signal does not change (not increase x4 ???). 
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Changing the phase:     0 / 6 =   

 

 
 

 

 
 
Fig. 3.7.   Changing the phase of the sinusoidal function has 
negligible effect on the Fourier transform. 
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4.   Superposition of sinusoidal functions 

 
Consider the signal which is the superposition of four sinusoidal 
functions where Hz 0 20f = . 

 

( ) ( )

( ) ( )

1 0 2 0

3 0 4 0

( ) sin 2 sin 2 (2 )

sin 2 (3 ) sin 2 (4 )

h t A f t A f t

A f t A f t

 

 

= + +

+
 

 

 

 
Fig. 4.1.   The superposition of four sinusoidal function: 

0 1 2 3 420 1f Hz A A A A= = = = =  
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Fig. 4.2. The absolute value of the Fourier transform and the 

PSD function. 
 
 

The total powers in the signal calculated from equation 3 are 

displayed in the Command Window 

 time domain             PT = 0.4000 

 frequency domain   PF = 0.3972 
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Simulation with parameters: 

0

1 1 2 2

3 3 4

20

1 20 2 40

3 60 4 4 80

f Hz

A f A f

A f A f

=

= = = =

= = = =

 

 

 

Fig. 4.3.   The function and the inverse Fourier transform. 
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 Fig. 4.4.   The Fourier transform. 

 

The major four peaks in figure 16 can be found in the 

Command Window using the statements 

  [a b]=findpeaks(abs(H),'MinPeakHeigh',0.13) 

  f(b) 

  a./a(4) 

 

The frequencies of the peaks and their relative heights [ …] 

are: 

 18.4 [1.0]    39.1 [1.6]    59.6 [2.3]    80.3 [3.0] 
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Fig. 4.5.   The PSD function. 

 

The major four peaks in figure 17 can be found in the 

Command Window using the statements 

 [a b] = findpeaks(Ph,'MinPeakHeigh',0.03) 

   f(b) 

   a./a(4) 

 

The frequencies of the peaks and their relative heights [ …] 

are: 

 18.4 [1.0]    39.1 [2.6]    59.6 [5.1]    80.3 [9.1] 
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5.    Square wave 

A square wave can be approximated by a Fourier series of the 

form 

 

( )
( )

( ) ( )

0
0

0 0

sin 2 (3 )
( ) sin 2

3

sin 2 (5 ) sin 2 (7 )

5 7

f t
h t f t

f t f t




 

= + +

+ +

  

 

 

Fig. 5.1.   The square wave signal ( )0 10 Hzf =  and its inverse 

Fourier transform. 

 

The series exhibits a non-uniformity of convergence near a 

discontinuity. Note, the overshoot, which is called the Gibb’s 

phenomena. The greater the number of terms included in the 
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series a better the approximation, however, the overshoot 

remains finite. 

 

Fig. 5.2. The Fourier transform of the square wave signal. 

 

The location and amplitude of the peaks can be estimated using 

the ginput function in the Command Window 

 >> xx = ginput 

              xx = 

                           9.7581    0.1940 

                           29.9194    0.0638 

                           50.0806    0.0379 

                           69.9194    0.0268 

                           90.2419    0.0212 

                           110.0806    0.0176 
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The Fourier transform routine correctly calculated the peak 
frequencies of 10, 30, 50, 70, 90 and 110 Hz. 
 
The relative heights of the peaks can be computed in the 

Command Window 

>> xx(:,2)./xx(1,2) 

    1.0000      0.3287     0.1956      0.1384      0.1092      0.0905 

 

     The theoretical predictions for the relative amplitudes are 

       1/1             1/3          1/5             1/7            1/9           1/11 

    1.0000      0.3333     0.2.000      0.1429      0.1111      0.0909 

 

Again, good agreement between the theoretical values and the 

computed values. 

 

 

Fig. 5.3.    The PSD function. 
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6.     SAWTOOTH FUNCTION 

 

A sawtooth function can be approximated by a Fourier series of 

the form 

 
( )0

1

sin 2
( ) ( 1)

n

n

n f t
h t A B

n



=

= + −  

 

Fig. 

6.1.   The sawtooth function and the inverse Fourier transfer. 

The DC component of the function has been removed. The 

fundamental frequency is ( )0 0.10 Hzf = . 

 

As for the square wave, there are overshoots at the 

discontinuities. 
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Fig. 6.2.   The Fourier transform of the sawtooth function. 

 

The location and amplitude of the peaks can be estimated using 

the ginput function in the Command Window 

 >> xx = ginput 

       xx = 
          0.0992   81.1835 
     0.1992   40.1076 
     0.3008   26.6535 
     0.3992   20.0283 
     0.5008   15.9513 
     0.6008   13.3012 
     0.7008   11.4666 
     0.8008    9.8358 
     0.9008    8.9185 
     0.9992    8.1031 
     1.1008    7.1857 
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The Fourier transform routine correctly calculated the peak 

frequencies of 0.10  0.20  0.30  0.40  0.50  0.60  0.70  0.80  0.90 

1.00 and 1.10 Hz. 

 

The relative heights of the peaks can be computed in the 

Command Window (  xx(:,2)/xx(1,2)  ) and again there is good 

agreement between the theoretical values and the computed 

values. 

 

n 1/n Theory Computed 

1 1/1 1.000 1.000 

2 1/2 0.500 0.494 

3 1/3 0.333 0.328 

4 1/4 0.250 0.247 

5 1/5 0.200 0.197 

6 1/6 0.167 0.164 

7 1/6 0.143 0.141 

8 1/8 0.125 0.121 

9 1/9 0.111 0.110 

10 1/10 0.100 0.100 

11 1/11 0.091 0.089 
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Fig. 6.3.  The PSD function. 
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7.  Single Square Pulse 

 

The Fourier and inverse of a single square pulse can easily be 

computed. 

 

     Square pulse generated by the code 

 h = zeros(1,nT); 
     h(round(nT/3) : round(2*nT/3)) = 1; 
     % h = h - 0.5; 

 

The DC component of the square pulse can be removed by un-

commenting the statement  % h = h – 0.5. 

 

 

 

Fig. 7.1.   The square pulse and its inverse Fourier transform. 
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Fig. 7.2.   The Fourier transform of the square pulse with a large 

DC component. 

 

 

Fig. 7.3. The PSD function for the square pulse. 
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Fig. 7.4.   The square pulse and its inverse Fourier transform 

with the DC component removed. 
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Fig. 7.5.   The absolute value of the Fourier transform of the 

square pulse with the DC component removed. The spacing 

between the peaks for f > 0 or f < 0 is constant ( )0.60 Hzf = . 
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We can explore the concept that a narrow pulse has a much 

broader frequency spectrum.  

 

 

Fig. 7.6  Square wave pulses. 
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Fig. 7.7.  The narrow pulse (top graph) does have a broader 

spectrum where higher frequency components make a 

contribution to the Fourier Transform. 
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8.   Damped sine wave 

The function for a damped sine wave can be expressed as 

  0( ) exp( / ) sin(2 )h t A t f t = −  

  

This function might represent the displacement of a damped 

harmonic oscillator or the electric field in a radiated wave, or 

the current in an antenna. 

 

 

Fig. 8.1.   A damped sine wave with 01 10 Hz 0.1 sA f = = =  
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Fig. 8.2.   The Fourier transform of the damped sine. 

 

 

Fig. 8.3.   Energy spectrum for the damped sine wave. 

The width of the PSD function at half maximum power is 

approximately equal to 
1

3.18 Hzf
 

  = . The width at half 

maximum power using the data Cursor of figure 31 is 3.40 Hz. 
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9.   ECG recording 

The raw data for an ECG recoding is stored in the data file 

ecg.mat. An estimate of the time scale is used and the DC 

component of the signal is removed. 

 

Fig. 9.1.   The ECG recording. 
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Fig. 9.2   The Fourier transform of the ECG recording and PSD 

function for the ECG recording. 
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10   BEATS (sound files) 

A beat signal is computed by the addition of two sinusoidal 

functions 

    A1 = 1; A2 = 1; 

    f1 = 1000; f2 = 1008; 

    phi1 = 0; phi2 = 0; 

    h = A1.*sin(2*pi*f1*t + phi1) + A2.* sin(2*pi*f2*t+ phi2); 

 

Fig. 10.1.   Beat pattern of two pure tones 1000 Hz and 1008 Hz. 
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Fig. 10.2.   The Fourier transform of the beat signal. It took 

about 43 seconds to calculate the Fourier transform.  Zoom 

view of the PSD function showing the two peaks 

at frequencies 1000 Hz and 1008 Hz. 
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11.  BEATS (audio file) 

The recording of a beat pattern produced by two pure tones of 

1000 Hz and 1008 Hz is loaded from the wav file 

wav_S1000_1008.wav.  

 

Fig. 11.1.  Beat pattern. 

  



  45 

 

Fig. 11.2.   The Fourier transform of the beat signal. It took 

about 43 seconds to calculate the Fourier transform.  Zoom 

view of the PSD function showing the two peaks 

at frequencies 1000 Hz and 1008 Hz. 
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12.     Sound recording at 440 Hz 

 [signal, Fs] = audioread('audio440.wav'); 

 

Fig. 12.1.   440 Hz Signal 

 

Fig. 12.2.  The Fourier transform accurately predicts the signal 

frequency at 440 Hz.   
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13.  220 Hz  Guitar / 14. 220 Hz Clarient / 15. 220 Hz Voice 

We can compare three recording of a note at 220 Hz produced 

by a guitar, clarinet and by a voice. 
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Guitar 

 
Clarinet 

 
Voice 
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The predominant frequencies for the guitar are its fundamental 

(220 Hz) and the 1st harmonic (440 Hz).  The clarinet 

fundamental is at 220 Hz, the 1st harmonics at 440 Hz and a 

strong 3rd harmonic at 660 Hz. The voice has the fundamental 

at 220 Hz and the 3rd harmonic at 660 Hz and the 2nd harmonic 

is absent. 
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16.     Train Whistle 

The recording of a train whistle is loaded from the wav file 

Train.wav. 

 

Fig. 16.1.   The sound of a train whistle. 

 

 

Fig. 16.2.   The Fourier transform of a train whistle. 
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17.   Digital Filtering 

We can digitally filter a signal by setting the Fourier transfer 

function to zero for the desired frequency range. For example, 

consider the superposition of two sine functions with 

frequencies 1000 Hz and 100 Hz. 

 

h = sin(2*pi*1000*t) + sin(2*pi*100*t); 

 

 

Fig. 17.1.   Unfiltered signal with frequency components 1000 

Hz and 100 Hz. 
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Fig. 17.2.   Fourier transform of the unfiltered signal with 

frequency components 1000 Hz and 100 Hz. 

 

 

Fig. 17.3.   PSD function for the unfiltered signal with frequency 

components 1000 Hz and 100 Hz. 
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The original signal can be low pass filtered by removing all 

frequency components with values less than 500 Hz by 

uncommenting the lines of code 

 

% Filtering  (uncomment for filtering effects) 
% H(f<500) = 0; 

 
  H(f<500) = 0; 

 

 

 

 
Fig. 17.4.  The 100 Hz frequency component is removed and we 
are left with the pure 1000 Hz signal. 
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Fig.17.5.  The filtered Fourier transform with the low frequency 

100 Hz component removed. 

 

 

Fig. 17.6.  The filtered PSD function with the low frequency 100 

Hz component removed. 

 


