
Doing Physics With Matlab Matlab Basics 1

 DOING PHYSICS WITH MATLAB

 GETTING STARTED WITH MATLAB

 MATLAB BASICS

Ian Cooper

School of Physics, University of Sydney

ian.cooper@sydney.edu.au

DOWNLOAD MATLAB SCRIPTS

This document gives you a brief introduction and a reference section for getting

started with Matlab. The first section describes the extensive on-line help that is

provided within the Matlab environment. The remaining sections describe some of the

more commonly used Matlab commands, how data is stored in matrices and how to

create your own Matlab functions.

HELP

There are an enormous number of Matlab commands that can be used. Using the

Command Window or the Help Window, one can access most of the information

about using Matlab. Access to the Help Window is though typing helpdesk or

selecting the Help menu or typing help in the Command Window. A good way to get

more familiar with using Matlab is to know how to use the help provided effectively.

The Help has a hierarchical structure, for example:

help (help topics) help elfun (elementary math functions)  help atan2

(four quadrant inverse tangent).

The help entries can be searched for keywords using the lookfor command. For

example, searching for the keyword gives numerous matches:

 lookfor 'inverse' 
 nvhilb inverse Hilbert matrix.

ipermute inverse permute array dimensions.

acos inverse cosine.

acosh inverse hyperbolic cosine.

acot inverse cotangent.

acoth inverse hyperbolic cotangent.

 …

 Typing help in the Command Window gives a list of the available help topics.

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/mscripts

Doing Physics With Matlab Matlab Basics 2

help

matlab\general General purpose commands

matlab\ops Operators and special characters

matlab\lang Programming language constructs

matlab\elmat Elementary matrices and matrix manipulation

matlab\elfun Elementary math functions

matlab\specfun Specialized math functions

matlab\matfun Matrix functions and numerical linear algebra

matlab\datafun Data analysis and Fourier transforms

matlab\audio Audio support

matlab\polyfun Interpolation and polynomials

matlab\funfun Function functions and ODE solvers

matlab\sparfun Sparse matrices

matlab\graph2d Two dimensional graphs

matlab\graph3d Three dimensional graphs

matlab\specgraph Specialized graphs

matlab\graphics Handle Graphics

matlab\uitools Graphical user interface tools

matlab\strfun Character strings

matlab\iofun File input/output

matlab\timefun Time and dates

matlab\datatypes Data types and structures

matlab\verctrl Version control

matlab\winfun

Windows Operating System Interface Files

(DDE/COM)
matlab\demos Examples and demonstrations

toolbox\local Preferences

images\images Image Processing Toolbox

images\imdemos Image Processing Toolbox --- demos and

sample images

signal\signal Signal Processing Toolbox

signal\signal Signal Processing Toolbox

signal\sigtools Design & Analysis Tool (GUI)

signal\sptoolgui Signal Processing Toolbox GUI

signal\sigdemos Signal Processing Toolbox Demonstrations.

For more help on directory/topic, type "help topic".

For command syntax information, type "help syntax".

Doing Physics With Matlab Matlab Basics 3

Help elfun

Elementary math functions

Trigonometric

sin Sine sinh Hyperbolic sine

asin Inverse sine asinh Inverse hyperbolic sine

cos Cosine cosh Hyperbolic cosine

acos Inverse cosine acosh Inverse hyperbolic

cosine

tan Tangent. tanh Hyperbolic tangent

atan - Inverse tangent atan2 Four quadrant inverse

tangent

atanh Inverse hyperbolic

tangent

sec Secant sech Hyperbolic secant

asec Inverse secant asech Inverse hyperbolic

secant

csc Cosecant csch Hyperbolic cosecant

acsc Inverse cosecant acsch Inverse hyperbolic

cosecant

cot Cotangent coth Hyperbolic cotangent

acot Inverse cotangent acoth Inverse hyperbolic

cotangent

Exponential
exp Exponential log Natural logarithm

log10 Common (base

10) logarithm

log2 Base 2 logarithm and

dissect floating point

number

pow2 Base 2 power and

scale floating point

number

realpow Power that will error out

on complex result

reallog Natural logarithm

of real number

realsqrt Square root of number

greater than or equal to

zero

sqrt Square root nextpow2 Next higher power of 2

Complex
abs Absolute value angle Phase angle

complex Construct complex

data from real and

imaginary parts

conj Complex conjugate

imag Complex

imaginary part

real Complex real part

unwrap Unwrap phase

angle

isreal True for real array

cplxpair Sort numbers into

complex conjugate

pairs

Doing Physics With Matlab Matlab Basics 4

Rounding and remainder
fix Round towards

zero

floor Round towards minus

infinity

ceil Round towards

plus infinity

round Round towards nearest

integer

mod Modulus (signed

remainder after

division)

rem Remainder after division

sign Signum

help atan2

 ATAN2 Four quadrant inverse tangent.

 ATAN2(Y,X) is the four quadrant arctangent of the real parts of the

 elements of X and Y. -pi <= ATAN2(Y,X) <= pi.

 See also ATAN.

The Matlab help accessed through the Help Window contains more information than

the information displayed in the Command Window. For example, searching in the

Help Window for the function atan2 gives:

atan2 Four-quadrant inverse tangent

 Syntax

P = atan2(Y,X)

Description

P = atan2(Y,X) returns an array P the same size as X and Y containing the

element-by-element, four-quadrant inverse tangent (arctangent) of the

real parts of Y and X. Any imaginary parts are ignored.

Elements of P lie in the closed interval [-pi,pi], where pi is the MATLAB

floating-point representation of .

atan uses sign(Y) and sign(X) to determine the specific quadrant.

atan2(Y,X) contrasts with atan(Y/X),

whose results are limited to the

interval [-/2, /2] , or the right side

of this diagram.

Examples

Any complex number z = x + iy is

converted to polar coordinates with

 r = abs(z)

 theta =atan2(imag(z),real(z))

For example, z = 4 + 3i;

 r = abs(z);

 theta = atan2(imag(z),

 real(z))

 r = 5 theta = 0.6435

X

Y

0
-

-/2

/2

Doing Physics With Matlab Matlab Basics 5

help FILEFORMATS

 Readable file formats.

Data Formats

Format Command Returns
MAT - MATLAB workspace Load Variables in file

CSV - Comma separated

numbers

csvread Double array.

DAT - Formatted text importdata Double array

DLM - Delimited text dlmread Double array

TAB - Tab separated text dlmread Double array

Spreadsheet formats
 XLS - Excel worksheet xlsread Double & cell array

Scientific data formats
CDF - Common Data Format cdfread Cell array of CDF records

FITS - Flexible Image Transport

System

fitsread Primary or extension table

data

HDF - Hierarchical Data Format hdfread HDF or HDF-EOS data set

 Movie formats
AVI - Movie aviread MATLAB movie

Image formats
TIFF - TIFF image imread Truecolor, grayscale or

indexed image(s).

PNG - PNG image imread Truecolor, grayscale or

indexed image

HDF - HDF image imread Truecolor or indexed

image(s)

BMP - BMP image imread Truecolor or indexed image

JPEG - JPEG image imread Truecolor or grayscale image

GIF - GIF image imread Indexed image

PCX - PCX image imread Indexed image

XWD - XWD image imread Indexed image

CUR - Cursor image imread Indexed image

ICO - Icon image imread Indexed image.

RAS - Sun raster image imread Truecolor or indexed

PBM - PBM image imread Grayscale image

PGM - PGM image imread Grayscale image

PPM - PPM image imread Truecolor image

Audio formats
AU - NeXT/Sun sound auread Sound data and sample rate

SND - NeXT/Sun sound auread Sound data and sample rate

WAV - Microsoft Wave sound wavread Sound data and sample rate

 See also IOFUN

Matlab help is very useful but extensive and so the purpose of this Chapter is to

review many of the common Matlab features and commands through illustrative

examples.

Doing Physics With Matlab Matlab Basics 6

GENERAL PURPOSE COMMANDS

The following table list just a few of the Matlab commands that are used for managing

the Matlab environment. The Matlab command is typed into the Command Window.

For more information on any of the commands lists use help, e.g., help ver.

Matlab

Command

Function / Purpose

helpdesk Opens Help Window

demo Can view and run available Matlab demonstrations.

info Provides contact information for getting extra

assistance with Matlab.

ver Displays the current Matlab, Simulink and toolbox

version information.

dir Lists the files in a directory. Pathnames and

wildcards may be used. For example, dir *.m lists all

the M-files in the current directory.

cd cd by itself, prints out the current directory.

Change current working directory.

 cd directory-spec: sets the current directory to the

 one specified
 cd \a03\mat\graphics

cd .. moves to the directory above the current one.

path Controls Matlab's search path.

For example, the following statements add another

directory to Matlab's search path

 Windows: path(path,'c:\ao3\mat\graphics')

pdf Shows current working directory.

what List MATLAB specific files in the current directory.

which Locates functions and files
 which result  result not found.

 which sinc  C:\a03\mat\mg\scripts\sinc.m

save

load

save test.mat  saves all workspace variables to

the file test.mat in the current directory.

load test  loads the variables saved in the file

test.mat.

save xData  saves only the variable xData.

Doing Physics With Matlab Matlab Basics 7

load Xdata  loads the variable xData into the

Matlab workspace.

save test.mat xData yData zData  saves the

variables Xdata, yData and zData in the file

test.mat in the current directory.

delete delete test.mat  deletes the file test.mat from the

current directory.

pack Consolidate workspace memory: performs memory

garbage collection. Extended Matlab sessions may

cause memory to become fragmented, preventing

large variables from being stored. pack saves all

variables on disk, clears the memory, and then

reloads the variables.

diary Save text of MATLAB session.

diary filename  causes a copy of all subsequent

command window input and most of the resulting

command window output to be appended to the

named file. If no file is specified, the file 'diary' is

used.

 diary off  suspends it.

 diary on  turns it back on.

 diary  , by itself, toggles the diary state.

clear clear  clears all variables and functions from

workspace.

clear all  removes all variables, globals, functions

and MEX links.

clear Xdata yData  clears the variables xData and

yData from the workspace.

home

Moves the cursor to the upper left corner of the

Command Window and clears the visible portion of

the window. You can use the scroll bar to see what

was on the screen previously.

clc

Clears the command window and homes the cursor.

echo on / off Toggles the printing of instructions from m-script in

Command Window.

Doing Physics With Matlab Matlab Basics 8

Miscellaneous m-script commands

pause wait for user response

 (press any key to continue)

pause(10)  halts execution of

 m-script for 10 seconds

pause(0.1)  halts execution of

 m-script for 0.1 seconds

pause off  subsequent pause

 ignored

pause on  subsequent pause

 commands should pause

keyboard

 stops execution of the m-script and

 gives control to keyboard.

 K appears before the prompt.

 Variables may be examined or

 changed – all commands are valid.

 Keyboard mode terminated by hitting

 Enter
input

 prompt user for input

 num = input('How many particles? ')

menu

 choice = menu(header, item1, item2, ...)

Generate a menu of choices for user input.

 K = menu('Choose a color','Red','Blue','Green') 

 ----- Choose a color -----

 1) Red

 2) Blue

 3) Green

 Select a menu number:

 The number entered by the user in response to the prompt is returned as K

 (i.e. K = 2 implies that the user selected Blue).

Doing Physics With Matlab Matlab Basics 9

Operators and special functions

+ plus - minus ^ matrix power

.^
array power

\
backslash or left

division
/

slash or right

division

./
array division

:
colon (subscripting,

array manipulation) ()
parentheses

(contains

arguments)

. decimal point .. parent directory … continuation

,
comma (argument /

statement separator)
;

semicolon (suppress

statement output)
*

matrix

multiplication

.* array multiplication % comment ' transpose

.'
nonconjugated

transpose =
assignment =

=

equality

< less than > greater than <= less than or equal to

>=
greater than or equal

to
&

logical AND
|

logical OR

~
logical NOT

xor
logical

EXCLUSIVE OR

Rational and logical operations

= < <= > >= == ~=

 x = 1; y = 20;

 if x == 2, a = 0, end;

 if y >= 15, a = 1, end

  a = 1

 x == 4  0 x == 1  1

&
 logical and

 x = 1; y = 20;

 if x == 1 & y <= 2, a = 0, end;

 if x > 0 & y < 100, a = 1, end

  a = 1

|
 logical or

 x = 1; y = 20; a = 99; b = 1;

 if x < 1 | y >= 2, a = 0, end;

 if x > 10 | y < 1, a = 1, end

  a = 0

 if (x == 2 | y ~= 19) & (a == 99),

 b = 0;

  b = 0

~
 logical not

 x = 1; y = 20; a = 0;

 ~x  0 ~y  0 ~a  1

 x ~= 4  1

Doing Physics With Matlab Matlab Basics 10

ARRAYS AND MATRICIES

Matlab works with arrays or matrices and the elements may be strings, real or

complex numbers and functions can have real or complex arguments. Matlab

functions and arithmetic operations can be performed directly on matrices. A matrix

of a single element can be through of a single constant or variable (A = 3). A matrix

can be a row vector or a column vector or a multi-dimensional array. Unlike most

programming languages, commands can act simultaneously on all elements of an

array. For example the set of numbers 1, 4, 9, 16, 25, 36, 49 can be entered into a row

vector by a statement in the Command, for example:

xR = [1 4 9 16 25 36 49]

The command sqrt(xR) will act on each element of the array xR by taking the square

root of each number

sqrt(xR)  1 2 3 4 5 6 7

The name of a matrix must be start with any letter, followed by any combination of

letters (upper or lower case) and numbers, for example,

 A, a, ScreenWidth, xR, xC, Slit_separation (A and a refer to different matrices)

The tables below show how data can be entered into a matrix; how to perform some

of the operations and use functions that can act on matrices; and lists some of the

special Matlab matrices. The appearance and number of significant figures of a matrix

displayed in the Command Window can be changed using the format command.

Format x = 51.12345678987654321 y = 5.112345610
23

format or format short

 x  51.1235

 y  5.1123e+023

format long

 x  51.12345678987654

 y  5.112345600000000e+023

format short e

 x  5.1123e+001

 y  5.1123e+023

format long e

 x  5.112345678987654e+001

 y  5.112345600000000e+023

disp (display array)
 disp(x)  51.1235

 tm = ' time t (s)'

 disp(tm)  time t (s)

Doing Physics With Matlab Matlab Basics 11

There is a very extensive set of Matlab mathematical functions. Some of the functions

which are most commonly used are given in the table below. It is a good idea to

practice using these functions in the Command Window.

Miscellaneous functions

abs(x)

 abs(-51)  51

sqrt(x)

 sqrt(51)  7.1414

 sqrt(-51)  0 + 7.1414i

round(x) round to nearest integer
 round(51)  51

 round(-51)  -51

 round(51.145)  51

 round(-51.145)  -51

 round(51.845)  52

 round(-51.845)  -52

fix(x) round towards zero

 fix(51)  51

 fix(-51)  -51

 fix(51.145)  51

 fix(-51.145)  -51

 fix(51.845)  51

 fix(-51.845)  -51

floor(x) round toward - 

 floor(51)  51

 floor(-51)  -51

 floor(51.145)  51

 floor(-51.145)  -52

 floor(51.845)  51

 floor(-51.845)  -52

ceil(x) round toward + 

 ceil(51)  51

 ceil(-51)  -51

 ceil(51.145)  52

 ceil(-51.145)  -51

 ceil(51.845)  52

 ceil(-51.845)  -51

sign(x) sign

 sign(51.145)  1

 sign(-51.145)  -1

 sign(0)  0

mod(x,y) modulus
 mod(30,5)  0 mod(-30,5)  0

 mod(31,5)  1 mod(-31,5)  4

 mod(34,5)  4 mod(-34,5)  1

rem(x,y) remainder
 rem(30,5)  0 rem(-30,5)  0

 rem(31,5)  1 rem(-31,5)  -1

 rem(34,5)  4 rem(-34,5)  -4

exp(x) exponential base e

 exp(1)  2.7183

 exp(0)  1

 exp(-5.145)  0.0058

log(x) log base e

 log(exp(1))  1

 log(10)  2.3026

log10(x) log base 10

 log10(exp(1))  0.4343

 log10(51.145)  1.7088

factorial(x) factorial x!
 factorial(4)  24

rand random number 0 to 1

 rand  0.9318

 rand(2,3) 
 0.4660 0.8462 0.2026

 0.4186 0.5252 0.6721

 a = 1; b = 10;

 floor(a + b*rand)

  random integer from 1 to 10

? rand('state', sum(100*clock))

 reset random number generator,

 so different results are obtained

Doing Physics With Matlab Matlab Basics 12

date

 s = date; s  04-Oct-2003

clock

 clock = [year month day hour

 minute seconds]

fix(clock)  2003 10 4 16 23 35

etime

 difference in seconds between

 two dates

T0 = [2000 10 15 0 0 0]

T1 = [2004 10 10 12 0 0]

etime(T1,T0)  125841600

tic starts a seconds counter

toc stops the seconds counter

cputime

 elapsed CPU time in seconds

 a = cputime 

 a = 1.811010000000000e+003

eval

 evaluates a string expression

 s = '123'

 a = eval(s)  a = 123

feval

 executes functions specified by

 strings

global

 defines global variables

… (press Enter)

 Long lines converted into short lines

 y = amp1*sin(2*pi*x/lambda1) …

 + amp2*sin(2*pi*x/lambda2)

Complex numbers z = x + i y 1i   or 1j  

angle(z)

 z = 4.5600 + 1.2300i

 angle(z)  0.2635

real(z)

 z = 4.5600 + 1.2300i

 real(z)  4.5600

imag(z)

 z = 4.5600 + 1.2300i

 imag(z)  1.2300

conj(z)

 z = 4.5600 + 1.2300i

 conj(z)  4.5600 – 1.2300i

abs(z)

 z = 4.5600 + 1.2300i

 abs(z)  4.7230

Doing Physics With Matlab Matlab Basics 13

Trigonometric functions (angles must be radians)
sin(x)

 x= 30 % x in degrees

 sin(x*(pi/180))  0.5000

asin(x)

 x = 0.7071

 asin(x)  0.7854

% angle in radians

 (180/pi)*asin(x)  44.995

 % angle in degrees

cos(x)

 x= 30 % x in degrees

 cos(x*(pi/180))  0.8660

acos(x)

 x = 0.7071

 acos(x)  0.7854

% angle in radians

 (180/pi)*acos(x)  45.0005

 % angle in degrees

tan(x)

 x= 30 % x in degrees

 tan(x*(pi/180))  0.5774

atan(x)

 x = 0.7071

 atan(x)  0.0706

% angle in radians

 (180/pi)*atan(x)  4.0447

 % angle in degrees

atan2(y,x)

 y = 1; x = 1

 tan2(y,x)/pi  0.2500

 y = 1; x = -1

 tan2(y,x)/pi  0.7500

% answers in rad / 

atan2(y,x)

 y = -1; x = 1

 tan2(y,x)/pi  -0.2500

 y = 1; x = -1

 tan2(y,x)/pi  0.7500

% answers in rad / 

Doing Physics With Matlab Matlab Basics 14

Setting up matrices

Simple variables

 u = 6; v = -12;

Complex variable

 z = 12 – 3i

Row vector

 xR = [1 2 3 4]  1 2 3 4

 yR = [9, 6, 3]  9 6 3

 Xmin = 0; Xmax = 3; dX = 0.5;

 X = Xmin : dX : Xmax

  0 0.5 1.0 1 .5 2.0 2.5 3.0

 length(XR)  4

 length(yR)  3

 length(X)  7

Removing an element
X(6) = [] 

 0 0.5 1.0 1 .5 2.0 3.0

Column Vector

 xC = [1 ; 2; 3; 4] 

 1

 2

 3

 4

length(xC)  4

Removing element
xC(3) = [] 

 1

 2

 4

Adding a column

xC(:,2) = [6; 7; 8; 9] 

1 6

2 7

3 8

4 9

Matrix 3 rows  4 columns

M = [1 2 3 4; 5 6 7 8; -1 -5 -8 -7] 

 1 2 3 4

 5 6 7 8

 -1 -5 –8 -7

M(3,2)  -5 M(1,4)  4

M(:, 2)  2 column vector
 6

 -5

M(1 , :)  1 2 3 4 row vector

M(2, [1 3])  5 7

M(3, 2:3)  -5 -8

Removing a column

M(:, 2) = []  1 3 4

 5 7 8

 -1 –8 -7

Doing Physics With Matlab Matlab Basics 15

Matricies

size

 size of an array

 size(u)  1, 1

 size(xR)  1, 4

 size(xC)  4, 1

 size(M)  3, 4

who

 lists the current variables

whos

 lists all the variables in the current

 workspace, together with information

 about their size, bytes, class, etc.

linspace(Xmin; Xmax, N)

 linear spaced row vector with N

 elements from Xmin to Xmax values

 with a spacing between elements of
 dX = (X(N)-X(1))/(N-1)

 Xmin = 0; Xmax = 10; N = 10;

 X = linspace(Xmin,Xmax,N) 

 0, 1.111, 2.222, 3.333, 4.444,

 5.556, 6.667, 7.778, 8.889, 1.000

 Xmin = 0; Xmax = 10; N = 11;

 X = linspace(Xmin,Xmax,N) 

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

logspace(a, b, N)

 generates a row vector of N

 logarithmically equally spaced points

 between decades 10
a
 and 10

b

 a = 0; b = 3; N = 6;

 X = logspace(a,b,N) 

 1.0e+003 *
0.0010 0.0040 0.0158

0.0631 0.2512 1.0000

eye(N)

 NN identity matrix

 

 
 
 
 
  
 

1 0 0 0

0 1 0 0
eye(4)

0 0 1 0

0 0 0 1

zeros(M,N)

 MN zero matrix

 

 
 
 
 
 

0 0 0 0 0

zeros(3,5) 0 0 0 0 0

0 0 0 0 0

ones(M,N)

 MN unit matrix

 
 
 
 

1 1 1 1 1 1
ones(2,6)

1 1 1 1 1 1

sort(X)

 X = [9 5 7 3 1 2 8]

 sort(X)  1 2 3 5 7 8 9

Doing Physics With Matlab Matlab Basics 16

sum(X)

 X = [9 5 7 3 1 2 8]

 sum(X)  35

M = [1 2 3 4; 5 6 7 8; -1 -5 -8 -7] 

 1 2 3 4

 5 6 7 8

 -1 -5 –8 -7

 sum(M) or sum(M,1)  5 3 2 5

 sums columns
 sum(M(:,1))  5

 sums 1
st
 column

 sum(M,2)  10

 26

 -21

sums rows

 sum(sum(M))  15

sums all elements

max(X) min(X)

 X = [9 5 7 3 1 2 8]

 max(X)  9

 min(X)  1

M = [1 2 3 4; 5 6 7 8; -1 -5 -8 -7] 

 1 2 3 4

 5 6 7 8

 -1 -5 –8 -7

 min(M)  -1 -5 -8 -7

min columns

 max(M)  5 6 7 8

max columns

 min(min(M))  -8

 max(max(M))  8

max or min of all elements

max(M')  4 8 -1

max rows

num2str

converts a number to a string

pi = 3.14159265358979

h = 6.62607610-34

S = [1.126 2.123 ; 3.123 4.123]

  1.123 2.123

 3.123 4.123

num2str(pi)  '3.1416'

num2str(pi, 0)  '3'

num2str(pi,8)  '3.1415927'

num2str(h)  '6.6261e-034'

num2str(h, 0)  '7e-034'

num2str(h,8)  '6.63e-034'

num2str(S,2) 

 '1.1 2.1'

 '3.1 4.1'

str2num

 converts a character array representation

 of a matrix of numbers to a numeric

 matrix

str2num('123')  123

str2num('abc123')  []

disp

 displays the array, without printing the

 array name, same as leaving the semi-

 colon off an expression except that

 empty arrays don't display.

 disp(pi)  3.1416

 disp('Speed')  Speed

max_speed = 25.45

disp('The maximum speed is ',num2str(max_speed),' m/s ') 

 The maximum speed is 25.45 m/s

Doing Physics With Matlab Matlab Basics 17

Format is a format control string containing conversion specifications or any

optional text

 %P.Qe for exponential

 %P.Qf for fixed point

 %P.Qg select shorter of %P.Qe or %P.Qf

 P integer specifying field width

 Q integer specifying number of decimal places

 \n produces a new line

fprintf

Write formatted data to file.

 x = 0:.1:1; y = [x; exp(x)];

 fid = fopen('exp.txt','w');

 fprintf(fid,'%6.2f %12.8f\n',y);

 fclose(fid);

sprintf

Write formatted data to string.

 sprintf('%0.5g',(1+sqrt(5))/2)  1.618

 sprintf('%0.5g',1/eps)  4.5036e+15

 sprintf('%15.5f',1/eps)  503599627370496.00000

 sprintf('%d',round(pi))  3

 sprintf('%s','Speed')  Speed

 sprintf('The array is %dx%d.',2,3)  The array is 2x3.

 sprintf('\n')  line termination character

csvrad read a file of comma-separated values

cswrite write a file of comma-separated values

fclose close file

fopen open file

fread read binary data from file

fwrite write binary data to file

fprintf write formatted data to file

fscanf read formatted data from file

Doing Physics With Matlab Matlab Basics 18

Matrix operations

Matrices that have identical dimensions can be added or subtracted.

 A = [1 2 3; 4 5 6] 
1 2 3

4 5 6
 B = [9 8 7; 6 5 4] 

9 8 7

6 5 4

 A + B 
10 10 10

10 10 10
 A – B 

8 6 4

2 0 2

  



 C = [A ; 10 11 12] 

1 2 3

4 5 6

10 11 12

 D = A + C  ??? Error using ==> + Matrix dimensions must agree.

Matrices can be multiplied together. For example, C = A B where the matrix A has

elements aik (i row and k column), B has elements bkj and C has elements cij

i j ik kj

k

c a b

A = [1 2 3 ; 4 5 6] 
1 2 3

4 5 6
 B = [1 4 ; 2 6 ; 3 8] 

1 4

2 6

3 8

A*B 
14 40

32 94
 B*A 

17 22 27

26 34 42

35 46 57

Element by element multiplication can be done using the dot  operator, for

example,

 C = [2 8; 4 12; 6 16]

 B .* C = C .*B 

2 32

8 72

18 128

For element by element multiplication, the two matrices must have matching

dimensions. For example, error messages are returned for A .* B or B .*A

 A .*B  ??? Error using ==> .* Matrix dimensions must agree.

B.*A  ??? Error using ==> .* Matrix dimensions must agree.

Doing Physics With Matlab Matlab Basics 19

The transpose of a matrix is gives by the command transpose or '. For example,

transpose(A) 

1 4

2 5

3 6

 B' 
1 2 3

4 6 8

 xR = [2 4 6 8]  2 4 6 8 yR = [-1 1 1 –1]  -1 1 1 -1

 yR' 

1

1

1

1





 xR * yR  ??? Error using ==> * Inner matrix dimensions must agree.

 xR * yR'  0

 xR .* yR  -2 4 6 -8

 xR .* yR'  ??? Error using ==> .* Matrix dimensions must agree.

If the matrix that is to be transposed has complex elements, then the ' operator gives

the complex conjugate transpose. To give the transpose without conjugation, use the .'

operation

 C = [1 4+8i ; 2-i 5 ; 3+6i 6-3i] 

1.0000 4.0000 + 8.0000i

2.0000 - 1.0000i 5.0000

3.0000 + 6.0000i 6.0000 - 3.0000i

 C' 
1.0000 2.0000 + 1.0000i 3.0000 - 6.0000i

4.0000 - 8.0000i 5.0000 6.0000 + 3.0000i

 C.' 
1.0000 2.0000 - 1.0000i 3.0000 + 6.0000i

4.0000 + 8.0000i 5.0000 6.0000 - 3.0000i

Matrix division

A / B  2.3333 -3.3333 A \ B  -6.0000 -5.5000 -5.0000

 3.3333 -4.3333 0 0 0

 5.0000 4.5000 4.0000

A ./ B  0.1111 0.2500 0.4286

 0.6667 1.0000 1.5000

Doing Physics With Matlab Matlab Basics 20

Manipulating matrices

 1 2 3

 A = 4 5 6

 7 8 9

rot90

 rotate matrix by 90 degrees

 3 6 9

 rot90(A)  2 5 8

 1 4 7

diag

 create or extract diagonals

 1

 diag(A)  5

 9

trace

 sum of diagonal elements

 trace(A)  15

det

 determinant

 det(A)  0

tril

 extract lower triangular part

 1 0 0

 tril(A)  4 5 0

 7 8 9

triu

 extract upper triangular part

 1 2 3

 triu(A)  0 5 6

 0 0 9

fliplr

 flip matrix in the left – right

 direction

 3 2 1

 fliplr(A)  6 5 4

 9 8 7

flipup

flip matrix in the up – down direction

 7 8 9

 flipup(A)  4 5 6

 1 2 3

flipdim

 flip matrix along specified dimension

 7 8 9

 flipdim(A,1)  4 5 6

 1 2 3

 3 2 1

 flipdim(A,2)  6 5 4

 9 8 7

norm

 matrix or vector norm

 norm(x) gives Euclidean length

 x = [0 1 2 3]

 norm(x)  sqrt(0+1+4+9)

 = 3.7417

Doing Physics With Matlab Matlab Basics 21

Find

Find indices of nonzero elements.

 I = FIND(X)  the indices of the vector X that are non-zero.

 I = FIND(A>100)  the indices of A where A is greater than 100.

 [I,J] = FIND(X)  row and column indices of the nonzero entries in matrix X.

 [I,J,V] = FIND(X)  vector containing the nonzero entries in X.

 Note that find(X) and find(X~=0) will produce the same I and J, but the latter will

produce a V with all 1's.

MATLAB AS A PROGRAMMING LANGUAGE

Control of the execution of a program

Matlab is a program language where the code is stored in text files as m-script or as

functions. An important set of commands are used to control the flow of the program

by testing when some condition is satisfied using if-else-end or switch-case

commands and by using for and while loops to repeat a set of statements.

Examples: if-end, if-else-end, if-elseif-end commands

 N = input(' Enter a number ');

text = 'The number is not an integer'

if mod(N,2) == 0, text = 'The number is even integer'; end

if mod(N,2) == 1, text = 'The number is odd integer'; end

disp(text)

 N = input(' Enter a number ');

if mod(N,2) == 0

 text = 'The number is even integer';

else

 text = 'The number is not an even integer';

end

disp(text)

N = input(' Enter a number ');

if mod(N,2) == 0

 text = 'The number is even integer';

elseif mod(N,2)== 1

 text = 'The number is an odd integer';

else

 text = 'The number is not an integer';

end

disp(text)

Doing Physics With Matlab Matlab Basics 22

Loops
To maximize speed of execution, matrices should be pre-allocated before a For or

While Loop.

for … end break

Using the for … end loop commands, statements can be repeated a number of times.

Long loops are more memory efficient when the colon expression appears in the for

command since the index vector is never created. The break statement can be used to

terminate the loop prematurely. If the initial value is xMin, the increment is dx (can be

positive or negative) and xMax is the final value of the loop variable

 for c = xMin : dx : xMax
 x = 20;

 y = 10;

 for cx = 1 : x;

 for cy = x: -2 : y;

 psi(cx, cy) = cx^2 + cy^2;

 sin(2*pi*cx/25)*sin(2*pi*cy/55);

 end

 end

 end

while … end

The while statement is used to repeat a statement a number of times until a conditions

is not satisfied. For example, to calculate a function a given number of steps

 maxSteps – input('Enter the number of steps for calculations ');

 Steps = 1;

 while Steps <= maxSteps

 x(Steps+1) =

switch … case … end

The selection of a block of code to be executed can be done with the switch - cases

statements. For example to evaluate different functions

 a = 2; b = 0.5;

 x = 0 : 2 : 10;

flag = input('Select type of equation: 1, 2, …, ')

switch flag

case 1

 y = a .* x + b;

case 2

 y = a. * x;

case 3

 y = a .* exp(-b.*x)

 otherwise

 y = [];

 end

Running this code with flag = 2  y = 0 4 8 12 16 20

Doing Physics With Matlab Matlab Basics 23

FUNCTIONS

Functions in Matlab are a very powerful tool for evaluating a sequence of commands

and / or evaluating mathematical functions. The function is a text file similar to an m-

script and has a .m extension. Input variables can be passed to the function and output

variables are returned, any intermediate variable values within the function are not

passed on to the Matlab workspace or to other functions. The function can be

executed from the Command Window or from an m-script. To illustrate the how to

create and use Matlab functions, a number of examples will be considered.

Example: Distance between two points
If the coordinates of two points P(xP, yP, zP) and Q(xQ, yQ, zQ) are known than the

distance, d between the points is

      
2 2 2

P Q P Q P Qd x x y y z z     

The input variables passed to the function are the six coordinates of the two points P

and Q. The output variable returned from the function is the distance d. The text for

the function distance.m is

function d = distance(xP,yP,zP,xQ,yQ,zQ)

% Function to calculate the distance between two points P and Q

d = sqrt((xP-xQ)^2 + (yP-yQ)^2 + (zP-zQ)^2);

The following statement when entered into the Command Window

d = distance(0,0,0,1,1,1)

gives
d = 1.7321

Doing Physics With Matlab Matlab Basics 24

Example: Converting between Cartesian and polar coordinates

A point P in a plane can be specified in Cartesian (xP, yP) or in polar coodinates (P,

P). The relationships between the two coordinate systems are

  2 2
P P P PatanPx y    

 P P P P P Pcos sinx y    

The two functions to convert Cartesian to polar and polar to Cartesian coordinates are

function [rho, theta] = CartesianToPolar(x,y)

% Function to convert Cartesian coordinates (x, y)

% to polar coordinates (rho, theta)

% The Matlab function atan2 returns an angle in radians

% If y >=0 then 0 <= theta <= pi

% if y < 0 then -pi < theta < 0

rho = sqrt(x^2 + y^2);

theta = atan2(y,x);

function [x, y] = PolarToCartesian(rho,theta)

% Function to convert Polar coordinates (rho, theta)

% to Cartesian coordinates (x, y)

% The angle theta must be in radians

x = rho * cos(theta);

y = rho * sin(theta);

The functions can be used in the Command Window or executed from an m-script, for

example,
 [xP, yP] = PolarToCartesian(1, pi/4)

gives

 xP = 0.7071 and yP = 0.7071

 [rho, theta] = CartesianToPolar(3, 4)

gives

 rho = 5 and theta = 0.9273

Doing Physics With Matlab Matlab Basics 25

Example: Evaluating an expression
Functions are very useful for evaluating a mathematical expression from the

Command Window or from an m-script. We will consider evaluating the sinc function

that is widely used in physics and engineering with the function sinc.m. The sinc

function can be expressed as a function of the single variable  where  is an angle in

radians by

sin()

()sinc







The sinc function approaches 1 as  approaches 1, but this causes a problem in Matlab

when you try to divide by zero. This can problem can be overcome by using the

Matlab function eps which is the smallest difference between two numbers.

function result = sinc(theta)

% Function to evaluate the sinc function

result = sin(theta + eps) ./ (theta + eps);

For example, sinc(0) gives then answer 1. For the array input for 
theta = 0 : 0.25 : 1

theta 0.0000 0.2500 0.5000 0.7500 1.0000

sinc(theta) 1.0000 0.9896 0.9589 0.9089 0.8415

