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mec_fr_bv.m 
This mscript is used to compute the displacement, velocity and acceleration for 

the motion of an object acted upon by a resistive force RF v  . The equation 

of motion is solved by analytical means (integration of the equation of motion) 
and by a finite difference numerical method.  
 
mec_fr_bv2.m 
This mscript is used to compute the displacement, velocity and acceleration for 

the motion of an object acted upon by a resistive force 2

RF v  . The equation 

of motion is solved by analytical means (integration of the equation of motion) 
and by a finite difference numerical method.  
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INTRODUCTION 

We will consider the horizontal motion of an object of mass m that is acted upon 

by a resistive force FR. 

 

Two very good models for the resistive force FR are 

 Model (1) RF v                                   low speeds 

 Model (2) 2

RF v                                 high speeds 

where  and  are constants of proportionality. 

Model (1) for linear resistance is often applicable when the object is moving with 

low speeds. In the motion through a fluid, the resistive force RF v  is often 

called the viscous drag and it arises from the cohesive forces between the layers 

of the fluid. The S.I. units for the constant  are N.m-1.s-1 or kg.s-1. 

Model (2) for quadratic resistance is more applicable for higher speeds. In the 

motion through fluids, the resistive force 2

RF v  is usually called the drag 

and is related to the momentum transfer between the moving object and the 

fluid it travels through. The S.I. units for the constant are N.m-2.s-2 or kg.m-1.  

Many problems in the mathematical analysis of particles moving under the 

influence of resistive forces, you start with the equation of motion. To find 

velocities and displacements as functions of time you must integrate the 

equation of motion.  

The equation of motion for a particle can be derived from Newton’s Second Law

 (3) 
1

i

i

a F
m

                Newton’s Second Law 

When the resultant force acting on the object is simply the resistive force, the 

acceleration a of the object is 

 (4)  /a m v                Model (1) 

 (5)   2/a m v               Model (2) 
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MODEL 1   RF v        

Analytical Approach     RF v      

The force acting on the object is the resistive force RF v  . In our frame of 

reference, we will take to the right as the positive direction.  

The equation of motion of the object is determined from Newton’s Second Law. 

  R

dv
ma m F v a v

dt m


       

where a is the acceleration of the object at any instance. 

The initial conditions are      0 00 0 /t v v x a m v      

We start with the equation of motion then integrate this equation where the 

limits of the integration are determined by the initial conditions (t = 0 and v = v0) 

and final conditions (t and v) 
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   

(5)  /

0

m t
v v e


            exponential decay 

We can now calculate the displacement  x as a function of time t 

  

 

 

 

0

/

0

/

0
0

/0

0

m t

x v
m t

v

t
m t

dx
v dx v dt
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 (6)   /0 1
m tmv

x e




 
  
 
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The velocity v also can be given as a function of x 

 

0 0

v x

v

dv dv
a v v

dt dx m

dv dx
m

dv dx
m






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  
 

 

 

 (7) 

 0

0

x v v
m

v v x
m





 
  
 

 

        straight line graphs 

When v = 0 the stopping distance is 0
stopping

mv
x


  

We can now investigate what happens when t   

 

 

  

/

0

/0 0

0
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m t

m t

t v v e

m v m v
t x e
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
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The object keeps moving till v = 0, which happens only in the limit t  . Then 

the object stop at the position 0m v
x


 . 
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We can define a time constant  

 
m


   

The velocity and displacement can be expressed as 

 /

0

tv v e   

  /0 1 tmv
x e 



 
  
 

 

After a time of about 5, the particle will stop when the speed of the particle 

becomes zero 

 0
stopping

mv
x



 
  
 

         stopping time ~ 5  

The stopping time is independent of the initial velocity but the greater the initial 

velocity the greater the stopping distance. The larger the constant , the shorter 

the stopping distance and quicker it stops and the larger the mass, the greater 

the stopping distance and it takes a longer time to stop the object.  

 

Numerical Approach     RF v     

We can also find the velocity and displacement of the object by solving Newton’s 

Second Law of motion using a finite difference method. 

We start with 

 (4)  /
dv

a m v
dt

          

In the finite difference method we calculate the velocity v and displacement x at 

N discrete times tk at fixed time intervals t 

  t1, t2, … , tk, …, tN      t =t2 - t1       t1 = 0     tk = (k-1) t     k = 1, 2, 3, … ,  N 

The acceleration a is approximated by the difference formula 

  
     1 2

2

k k kdv t v t v t

dt t

  



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Therefore, the velocity  2kv t  at time tk+2 is 

 

   
   

       
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 
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Hence, to calculate the velocity  2kv t  we need to know the velocity at the two 

previous time steps 1kt   and kt . We know t1 = 0 and v(t1) = v(0) = v0. 

We estimate the velocity at the second time step t2 

 (8)     2 1 1 1 1( ) ( ) ( ) ( ) /v t v t a t t v t m v t t       

where we have assumed a constant acceleration in the first time step. We can 

improve our estimate of 2( )v t  by using an average value of the acceleration in 

the first time step 

 

     

1 2
1 2

1
1 1 2 22

( ) ( )
( ) ( )

2

( ) / ( )

a t a t
v t t v t

v t m v t v t t v t

 
    

     

 

We can now calculate the velocity v(t) at all times from t = t1 to t = tN.   

The acceleration at each time step is 

 (9)    k ka t v t
m

 
  

 
 

The displacement at each time step is 

  

 
   2

1
2

k k

k

dx x
v

dt t

x t x t
v t

t
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


 








 

 (10)        2 12k k kx t x t t v t     
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RF v EXAMPLE       

The mscript can be used for simulations for the motion of an mec_fr_bv.m  

object acted upon a resistive force of the form RF v    (Model 1).  

Input parameters 

 m = 2 kg      = 10 kg.s-1   v0 = 10 m.s-1   t = 1x10-4 s 

Outputs     N numerical approach     A analytical approach 

 stopping distance     xstopping = 2.00 m 

 time constant      = 0.200 s     5 = 1.00 s 

 

 

acceleration     0t a   

 

 

   

 

 

velocity     0t v   
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displacement     0
stopping

mv
t x x



 
    

 
 

 

For the input parameters used in this simulation, there is excellent agreement 

between the values calculated using the numerical and analytical approaches. 

 

However, you always need to be careful in using numerical approaches to solve 

problems. In this instance, you need to check the convergence of results by 

progressively making the time step t smaller. 

 

When the time step is                   

t = 1x10-2 s the numerical and 

analytical results do not agree. 

The time step is too large for 

accurate results using the 

numerical approach. 
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MODEL 2   
2

RF v        

Analytical Approach     2

RF v      

The force acting on the object is the resistive force 2

RF v  . In our frame of 

reference, we will take to the right as the positive direction.  

The equation of motion of the object is determined from Newton’s Second Law. 

  2 2

R

dv
ma m F v a v

dt m


       

where a is the acceleration of the object at any instance. 

The initial conditions are       2

0 00 0 /t v v x a m v      

We start with the equation of motion then integrate this equation where the 

limits of the integration are determined by the initial conditions (t = 0 and v = v0) 

and final conditions (t and v) 
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   
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   

(11)    0

01

v
v

v
t

m




 
  
 

         

The acceleration is 

 (12) 

2

2

0

0

1

1
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t

m
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

 
  

    
       
  

 

  
2

1m
t a

t

  
    

  
        acceleration becomes small very rapidly 
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We can now calculate the displacement  x as a function of time t 

  

 
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 (13) 0log
m v
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(11) 0
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 (14) 0log 1
m v

x t
m





    
     
    

          surprising result !!! 

As time goes on the displacement gets bigger and bigger. In this simple model, 

the objects just keeps moving towards the right. 

  

Numerical Approach     2

RF v     

We can also find the velocity and displacement of the object by solving Newton’s 

Second Law of motion using a finite difference method. 

We start with 

 (4)   2/
dv

a m v
dt

          

In the finite difference method we calculate the velocity v and displacement x at 

N discrete times tk at fixed time intervals t 

  t1, t2, … , tk, …, tN      t =t2 - t1       t1 = 0     tk = (k-1) t     k = 1, 2, 3, … ,  N 

The acceleration a is approximated by the difference formula 

  
     1 2

2

k k kdv t v t v t

dt t

  



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Therefore, the velocity  2kv t  at time tk+2 is 

 

   
   

       

22

1

2

2 1

/
2

2 /

k k

k

k k k

v t v t
m v t

t

v t v t t m v t









 


 



  

 

Hence, to calculate the velocity  2kv t  we need to know the velocity at the two 

previous time steps 1kt   and kt . We know t1 = 0 and v(t1) = v(0) = v0. 

We estimate the velocity at the second time step t2 

 (8)     2 1 1 1 1( ) ( ) ( ) ( ) /v t v t a t t v t m v t t       

where we have assumed a constant acceleration in the first time step. We can 

improve our estimate of 2( )v t  by using an average value of the acceleration in 

the first time step 

 

     

1 2
1 2

1
1 1 2 22

( ) ( )
( ) ( )

2

( ) / ( )

a t a t
v t t v t

v t m v t v t t v t

 
    

     

 

We can now calculate the velocity v(t) at all times from t = t1 to t = tN.   

The acceleration at each time step is 

 (9)    
2

k ka t v t
m

 
  

 
 

The displacement at each time step is 

  

 
   2
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
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 (10)        2 12k k kx t x t t v t     

 

  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm


http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm                            12 
 

2

RF v EXAMPLE          

The mscript can be used for simulations for the motion of an mec_fr_bv2.m  

object acted upon a resistive force of the form 2

RF v     (Model 2).  

Input parameters 

 m = 2 kg      = 5 kg.m-1   v0 = 10 m.s-1   t = 1x10-4 s     tmax = 5 s 

Outputs     N numerical approach     A analytical approach 

  

 

acceleration     0t a   

acceleration quicker gets smaller 

in magnitude with time 

 

  

  

 

 

velocity     0t v   
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displacement     does not go to zero as t   

 

For the input parameters used in this simulation, there is excellent agreement 

between the values calculated using the numerical and analytical approaches. 

 

However, you always need to be careful in using numerical approaches to solve 

problems. In this instance, you need to check the convergence of results by 

progressively making the time step t smaller. 

 

When the time step is t = 1x10-3 s 

the numerical and analytical results 

do not agree. The time step is too 

large for accurate results using the 

numerical approach. In the numerical 

approach the position values oscillate 

about the analytical values. 
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