

## DOING PHYSICS WITH PYTHON

NUMERICAL INTEGRATION
[1D] AND [2D] INTEGRALS

## Ian Cooper <br> matlabvisualphysics@gmail.com

## DOWNLOAD DIRECTORIES FOR PYTHON CODE

## Google drive

## GitHub

op001.py op002.py op003.py
Computation of the integral of functions of the form $f(x)$ and $f(x, y)$ using Simpson's $1 / 3$ rule. The code can be changed into a function.

## COMPUTATION OF ONE-DIMENSIONAL INTEGRALS

We want to compute a number expressing the definite integral of the function $f(x)$ between two specific limits $a$ and $b$
(1) $\quad I=\int_{a}^{b} f(x) \mathrm{d} x$

The evaluation of such integrals is often called quadrature.

In Python we can consider two approaches to evaluate a definite integral (equation 1). The library from scipy import integrate is required. Integration of a function using the functions

## 1. quad

2. simps for sampled data using Simpson's rule.

Steps:

- Define the function and its limits
- Use the function quad or simps

To illustrate how to compute the integral a number of examples will be given. Also, it is often a good idea to plot the graph of the $f(x)$.

Example 1 op003.py

$$
\begin{aligned}
& I=\int_{0}^{\pi / 2} \cos (x) \mathrm{d} x \quad f(x)=\cos (x) \quad a=0 \quad b=\pi / 2 \\
& \quad I_{\text {exact }}=1.000000 \ldots
\end{aligned}
$$

Using quad function returns integral value and error estimate

$$
I_{\text {quad }}=0.99999999999999991 .1102230246251564 \mathrm{e}-14
$$

Using simps function

$$
I_{\text {simps }}=1.000000000004289 \text { number of sample } \mathrm{N}=299
$$



Plot: $\cos (\mathrm{x})$ for $\mathrm{x}=0$ to $\mathrm{x}=\pi / 2$.

Using Simpson's rule: A major problem that arises with nonadaptive methods is that the number $N$ of partitions of the function required to provide a given accuracy is initially unknown. One approach to this problem is to successively double the number of partitions, and compare the results as the number of partitions increase.

Python code op003.py
import numpy as np
from numpy import pi, sin, cos, exp, linspace
from numpy.linalg import eig
from scipy.integrate import odeint, quad, dblquad, simps
from scipy import pi, sqrt
import matplotlib.pyplot as plt
import time
from mpl_toolkits.mplot3d import axes3d
import sympy as sym
def func(x):
$f=\cos (x)$
return f
\# >>>>> Inputs: Grid points, limits
$\mathrm{N}=299$
$a=0 ; b=p i / 2$
\# function $\mathrm{f}(\mathrm{x})$
$x=$ linspace(a,b,N)
$f=$ func $(x)$
\# Integrate function uisng quad
Iquad, lerr = quad(func,a,b)
print(Iquad,lerr)
\# Integrate function using simps
Is = simps(f,x)
print(Is)
\# Plot function
plt.rcParams['font.size'] = 12
plt.rcParams["figure.figsize"] = $(6,3)$
\# Figure 1 t vs x
fig1, axes = plt.subplots(nrows=1, ncols=1)
axes.set_xlabel('x',color= 'black',fontsize = 12)
axes.set_ylabel('f',color = 'black',fontsize = 12)
axes.xaxis.grid()
axes.yaxis.grid()
$x P=x ; y P=f$
axes.plot(xP, yP,'b',lw = 2)
fig1.tight_layout()
\# fig1.savefig('a1.png')

Example 2 op003.py

$$
\begin{gathered}
I=\int_{0}^{\pi / 2} e^{2+j x} \mathrm{~d} x \quad f(x)=e^{2+j x} \quad a=0 \quad b=\pi / 2 \quad j=\sqrt{-1} \\
I_{\text {exact }}=7.38905609893065+7.3890560989306495 \mathrm{j}
\end{gathered}
$$

Using quad function returns integral value and error estimate

$$
I_{\text {quad }}=7.389056098930658 .203500211279747 \mathrm{e}-14
$$

quad function only returns real part

Using simps function (number of sample $N=299$ )

$$
I_{\text {simps }}=7.389056098962341+7.389056098962339 \mathrm{j}
$$

## SYMBOLIC [1D] INTEGRATION

Integrals can be evaluated symbolically. You need the library import sympy as sym to use any of the symbolic tools.

A good reference is
https://scipy-lectures.org/packages/sympy.html\#integration

Code from op003.py
\#\%\% Symoblic integration: select function by removing \#
$x=\operatorname{sym} . S y m b o l(' x ')$
$y=$ sym.Symbol('y')
$\# y=6 * x * * 5$
$\# y=\operatorname{sym} \cdot \sin (x)$
$\# \mathrm{y}=\operatorname{sym} \cdot \log (\mathrm{x})$
$\# y=2 * x+\operatorname{sym} \cdot \sinh (x)$
sym.integrate(y, x)
\# Highlight the code and use F9 to execute the code \# It is possible to compute definite integral:
$\# y=x^{* *} 4 ; a=-1 ; b=1 ; \operatorname{sym}$.integrate $(y,(x, a, b))$
\# sym.integrate(sym.sin(x), (x, 0, sym.pi))
\# sym.integrate(sym.cos(x), (x, -sym.pi / 2, sym.pi / 2))
\# Also improper integrals are supported as well:
\# sym.integrate(sym.exp(-x), (x, 0, sym.oo))
\# sym.integrate(sym.exp(-x ** 2), (x, -sym.oo, sym.oo))

## [2D], surface, double, integration

$$
I=\iint_{A} f(x, y) d A \quad I=\int_{a_{y}}^{b_{y}} \int_{a_{x}}^{b_{x}} f(x, y) d x d y
$$

We want to compute the value of a definite integral of the function $f(x, y)$ between two specific limits $\left(a_{x}, b_{x}\right)$ and ( $a_{y}, b_{y}$ )

$$
I=\int_{a_{y}}^{b_{y}} \int_{a_{x}}^{b_{x}} f(x, y) d x d y
$$

A very practical and versatile way to compute [2D] integrals is using a [2D] form of Simpson's $1 / 3$ rule.

## Simpson's 1/3 rule

This rule is based on using a quadratic polynomial approximation to the function $f(x)$ over a pair of partitions. $N-1$ is the number of partitions where $N$ must be odd and $\Delta x \equiv h=(b-a) /(N-1)$. The integral is expressed below and is known as the composite Simpson's $1 / 3$ rule.

$$
I=\frac{h}{3}\left\{\left(f_{1}+f_{N}+4\left(f_{2}+f_{4}+\ldots+f_{N-2}\right)+2\left(f_{3}+f_{5}+\ldots+f_{N-1}\right)\right\}\right.
$$

Simpson's rule can be written vector form as

$$
I=\frac{h}{3} \mathbf{c f}^{\mathrm{T}}
$$

where $\mathbf{c}=\left[\begin{array}{lllll}1 & 4 & 2 & 4 & . .\end{array} 2_{1} 1\right]$ and $\mathbf{f}=\left[f_{1} f_{2} \ldots f_{N}\right]$.
$\mathbf{c}$ and $\mathbf{f}$ are row vectors and $\mathbf{f}^{\mathbf{T}}$ is a column vector.

## Simpson's [2D] method

The double integral

$$
I=\int_{a_{y}}^{b_{y}} \int_{a_{x}}^{b_{x}} f(x, y) d x d y
$$

can be approximated by applying Simpson's $1 / 3$ rule twice once for the $x$ integration and once for the $y$ integration with $N$ partitions for both the $x$ and $y$ values.

$$
\begin{array}{ll}
x \text {-values: } & x_{1} x_{2} x_{3} \ldots x_{c} \ldots x_{N} \\
y \text {-values: } & y_{1} y_{2} y_{3} \ldots y_{c} \ldots y_{N}
\end{array}
$$

The lower and upper bounds determine the size of the partitions

$$
d x \equiv h_{x}=\frac{b_{x}-a_{x}}{N-1} \quad d y \equiv h_{y}=\frac{b_{y}-a_{y}}{N-1}
$$

The $N x$-values and $N y$-values form a two-dimensional grid of $N$ $\mathrm{x} N$ points. The function $f(x, y)$ and the two-dimensional Simpson's coefficients are calculated at each grid point. Hence, the function $f(x, y)$ and the two-dimensional Simpson's coefficients can be represented by $N \times N$ matrices $\mathbf{F}$ and $\mathbf{S}$ respectively.

The Simpson matrix $\mathbf{S}$ for $N=5$ is

| $1 \times 1=$ | $4 \times 1=$ | $2 \times 1=$ | $4 \times 1=$ | $1 \times 1=$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 4 | 2 | 4 | 1 |
| $1 \times 4=$ | $4 \times 4=$ | $2 \times 4=$ | $4 \times 4=$ | $1 \times 4=$ |
| 4 | 16 | 4 | 16 | 1 |
| $1 \times 2=$ | $4 \times 2=$ | $2 \times 2=$ | $4 \times 2=$ | $1 \times 2=$ |
| 8 | 8 | 4 | 8 | 1 |
| $1 \times 4=$ | $4 \times 4=$ | $2 \times 4=$ | $4 \times 4=$ | $1 \times 4=$ |
| 4 | 16 | 4 | 16 | 1 |
| $1 \times 1=$ | $4 \times 1=$ <br> 1 | $2 \times 1=$ | $4 \times 1=$ | $1 \times 1=$ |
| 4 | 2 | 4 | 1 |  |


| 1 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 1 |
| ---: | ---: | :--- | :---: | :--- | :---: | :--- | :--- | :--- |
| 4 | 16 | 8 | 16 | 8 | 16 | 8 | 16 | 4 |
| 2 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 2 |
| 4 | 16 | 8 | 16 | 8 | 16 | 8 | 16 | 4 |
| 2 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 2 |
| 4 | 16 | 8 | 16 | 8 | 16 | 8 | 16 | 4 |
| 2 | 8 | 4 | 8 | 4 | 8 | 4 | 8 | 2 |
| 4 | 16 | 8 | 16 | 8 | 16 | 8 | 16 | 4 |
| 1 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 1 |

Therefore, the two-dimensional Simpson's rule which is used to estimate the value of the surface integral can be expressed as

$$
I=\left(\frac{h_{x} h_{y}}{9}\right) \sum_{m=1}^{N} \sum_{n=1}^{N}\left(\mathrm{~F}_{m n} \mathrm{~S}_{m n}\right)
$$

We include a mask matrix $\mathbf{M}(N x N)$ which has elements equal to 1 or 0 only. The mask matrix $\mathbf{M}$ is used where the integration is not over a rectangular area defined by the limits $a_{x}, b_{x}, a_{y}$ and $b_{y}$. The integral then becomes

$$
I=\left(\frac{h_{x} h_{y}}{9}\right) \sum_{m=1}^{N} \sum_{n=1}^{N}\left(\mathrm{M}_{m n} \mathrm{~F}_{m n} \mathrm{~S}_{m n}\right)
$$

Required steps using the Simpson [2D] method are:

- Define the matrix $\mathbf{S}$ for the [2D] Simpson coefficients.
- Define the x and y ranges.
- Define the xy mesh for xx and yy using the meshgrid function.
- Calculate the matrix function $\mathbf{F}$.
- Calculate the mask matrix $\mathbf{M}$.
- Redefine the matrix $\mathbf{F}$ $\mathbf{F}=\mathbf{M F}$
- Sum all the elements of the matrix $\mathbf{F} \mathbf{S}$ and multiply by ( $h_{x}{ }_{\text {hy }} / 9$ ) to give the value of the integral.

We will consider a number of examples which demonstrates how to apply the two-dimensional Simpson's rule using the code op001.py

Example 3 op001.py

$$
\begin{aligned}
& \text { Integrate } f(x, y)=x^{2} y^{3} \\
& x: 0 \rightarrow 2 \text { and } y: 1 \rightarrow 5 \\
& \qquad I_{x y 1}=\int_{a_{y}}^{b_{y}} \int_{a_{x}}^{b_{x}} f(x, y) d x d y=\int_{1}^{5}\left[\int_{0}^{2} x^{2} y^{3} d x\right] d y=416
\end{aligned}
$$

The exact value of the integral can be found analytically and its value is 416 . So, we can compare the numerical estimate with the known exact value.

This is a two-dimensional problem, so we need to specify the values $(x, y)$ at all grid points which are determined from the upper and lower bounds. We can do this using the Python function meshgrid to calculate the value of the function $f(x, y)$ at each grid point $(x, y)$.

$$
\begin{aligned}
& a x=0 ; b x=2 ; a y=1 ; b y=5 \\
& x=\text { linspace }(a x, b x, N) \\
& y=\text { linspace(ay,by,N,N) } \\
& x x, y y=n p . m e s h g r i d(x, y) \\
& f=x x^{* *} 2 * y y^{* *} 3
\end{aligned}
$$

## [2D] space

To show how the meshgrid functions works, see figure (1) and the outputs of the variables $x, y, x x, y y$ and $f$ that can be displayed in the Console Window.

```
x= 0 0.5000 1.0000 1.5000 2.0000
xx =
    0}00.5000 1.0000 1.5000 2.0000
    O 0.5000}1.0000 1.5000 2.000
    0}00.5000 1.0000 1.5000 2.0000
    O
    0}00.5000 1.0000 1.5000 2.0000
```

$y=\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
$y \mathrm{y}=$
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$
$\begin{array}{lllll}2 & 2 & 2 & 2\end{array}$
$\begin{array}{lllll}3 & 3 & 3 & 3 & 3\end{array}$
$\begin{array}{lllll}4 & 4 & 4 & 4 & 4\end{array}$
$\begin{array}{lllll}5 & 5 & 5 & 5 & 5\end{array}$
$\mathrm{f}=$

| 0 | 0.2500 | 1.0000 | 2.2500 | 4.0000 |
| :--- | :--- | :--- | :--- | :--- |

    \(\begin{array}{lllll}0 & 2.0000 & 8.0000 & 18.0000 & 32.0000\end{array}\)
    \(\begin{array}{lllll}0 & 6.7500 & 27.0000 & 60.7500 & 108.0000\end{array}\)
    \(016.0000 \quad 64.0000144 .0000 \quad 256.0000\)
    \(\begin{array}{lllll}0 & 31.2500 & 125.0000 & 281.2500 & 500.0000\end{array}\)
    Simpson coefficients


The grid points for $N=5$ and how these points relate to the Matlab matrices.

## Calculation of [2D] Simpson coefficients

$$
\begin{aligned}
& s C=n p . o n e s(N) \\
& R=n p . \operatorname{arange}(1, N, 2) ; s c[R]=4 ; \\
& R=n p . \operatorname{arange}(2, N-1,2) ; s c[R]=2 \\
& s c x, s c y=n p . m e s h g r i d(s c, s c) \\
& s c 2 D=s c *^{*} s c y
\end{aligned}
$$

## Compute the integral

$$
\begin{aligned}
& h x=(b x-a x) /(N-1) ; h y=(b y-a y) /(N-1) \\
& h=h x^{*} h y / 9 \\
& \text { integral }=h * \operatorname{sum}\left(\operatorname{sum}\left(s c 2 D^{*} f\right)\right)
\end{aligned}
$$

With only 5 partitions and $25(5 \times 5)$ grid points, the numerical estimate is $\mathbf{4 1 6 . 0}$, the same as the exact value.


Example 3 Double Integrals and Volumes op001.py

$$
\text { Volume }=\iint_{A} f(x, y) d x d y
$$

To gain an intuitive feel for double integrals, the volume of the region enclosed by the area $A$ is equal to the value of the double integral.

Volume $V$ of a rectangular box

$$
f(x, y)=k \quad \text { height of box } \quad k>0
$$

Base of box - the lower bounds ( $a_{x}$ and $a_{y}$ ) and upper bounds ( $b_{x}$ and $b_{y}$ ) determine the area of the rectangular base of the box

$$
\text { Volume } V=\int_{a_{y}}^{b_{y}} \int_{a_{x}}^{b_{x}} k d x d y
$$

Box $k=1 \quad a_{x}=0 \quad b_{x}=1 \quad a_{y}=0 \quad b_{y}=1 \quad N=299$

Exact volume (analytical) $\quad V=1.0000$
Simpson's [2D] rule $\quad V=1.0000$


Volume $V$ of half box

$$
f(x, y)=1-x
$$

Base of box - the lower bounds ( $a_{x}$ and $a_{y}$ ) and upper bounds ( $b_{x}$ and $b_{y}$ ) determine the area of the rectangular base of the box

$$
\text { Volume } \quad V=\int_{a_{y}}^{b_{y}} \int_{a_{x}}^{b_{x}}(1-x) d x d y
$$

$a_{x}=0 \quad b_{x}=1 \quad a_{y}=0 \quad b_{y}=1$
$N=299$

Exact volume (analytical) $V=$ 0.50000


Simpson's [2D] rule $\quad V=0.50000$

## Volume V of a part-bowl

$$
f(x, y)=x^{2}+y^{2}
$$

Base of box - the lower bounds ( $a_{x}$ and $a_{y}$ ) and upper bounds ( $b_{x}$ and $b_{y}$ ) determine the area of the rectangular base of the surface

$$
\text { Volume } \quad V=\int_{a_{y}}^{b_{y}} \int_{a_{x}}^{b_{x}}\left(x^{2}+y^{2}\right) d x d y
$$

$a_{\mathrm{x}}=-1 \quad b_{x}=1 \quad a_{y}=0 \quad b_{y}=1$
$N=299$

Exact volume (analytical) $V=$ 1.3333


Simpson's [2D] rule $\quad V=1.3333$

Volume V over a rectangular base

$$
f(x, y)=\cos (x) \sin (y)
$$

Base of box - the lower bounds ( $a_{x}$ and $a_{y}$ ) and upper bounds ( $b_{x}$ and $b_{y}$ ) determine the area of the rectangular base of the surface

Volume $\quad V=\int_{a_{y}}^{b_{y}} \int_{a_{x}}^{b_{x}}(\cos (x) \sin (y)) d x d y$
$a_{\mathrm{x}}=0 \quad b_{x}=\pi / 2 \quad a_{y}=0 \quad b_{y}=\pi / 2 \quad N=299$

Exact volume (analytical)

$$
V=1.000
$$

Simpson's [2D] rule

$$
V=1.000000000008578
$$



## Volume of a hemisphere using Cartesian coordinates

Volume of a hemisphere of radius $a \quad V=\frac{2 \pi a^{3}}{3}$
Function

$$
x^{2}+y^{2}<a^{2} \quad f(x, y)=\sqrt{a^{2}-x^{2}-y^{2}} \quad x^{2}+y^{2} \geq a^{2} \quad f(x, y)=0
$$

Volume $\quad V=\int_{a_{y}}^{b_{y}} \int_{a_{x}}^{b_{x}}\left(\sqrt{a^{2}-x^{2}-y^{2}}\right) d x d y$

$$
a_{\mathrm{x}}=-1 \quad b_{x}=1 \quad a_{y}=-1 \quad b_{y}=1 \quad a=1
$$



Exact volume (analytical)

$$
V=2.094395102393195
$$

Simpson's [2D] rule
$N=99 \quad V=2.094417986583109$
$\mathrm{N}=999 \quad \mathrm{~V}=2.094395646847362$

We must have
$x^{2}+y^{2}<a^{2} \quad f(x, y)=\sqrt{a^{2}-x^{2}-y^{2}} \quad x^{2}+y^{2} \geq a^{2} \quad f(x, y)=0$

The code to define the function and mask matrix:
$\mathrm{f}=\mathrm{np}$. real(a**2 $-\mathrm{xx}^{* *} 2-\mathrm{yy}{ }^{* *} 2$ )
\# Mask matrix M
$\mathrm{M}=\mathrm{np} . \mathrm{ones}([\mathrm{N}, \mathrm{N}])$
$\mathrm{M}\left[\mathrm{xx} * * 2+\mathrm{yy}{ }^{* *} 2>1\right]=0$

Volume V over a triangular base

$$
y \leq 1-x \quad f(x, y)=h \quad y>1-x \quad f(x, y)=0
$$

Volume $\quad V=\int_{a_{y}}^{b_{y}} \int_{a_{x}}^{b_{x}} h d x d y$
$a_{\mathrm{x}}=0 \quad b_{x}=1 \quad a_{y}=0 \quad b_{y}=1 \quad$ height $h=6$

Exact volume (analytical)

$$
V=3.0000
$$

Simpson's [2D] rule
$N=299 \quad V=3.006673873549240$
$N=999 \quad V=3.001944436635462$
$N=999 \quad V=3.001944436635462$
$N=2999 \quad V=3.000632027607761$

Even with $N=2999$ the calculation took less than 1.0 s on a fast Windows computer.

The differences between the exact and computed values is due to the rectangular grid and the condition on the function being zero when $y>1-x$
( $y=1-x$ is a diagonal line and the grid is rectangular).

A logical Python function is used to define the function when $y>1-x$. The code to define the function is

$$
f=6^{*} x x^{* *} 0^{*} y y^{* *} 0
$$

$$
f[y y>1-x x]=0
$$


f

## Double Integrals In Polar Coordinates

https://tutorial.math.lamar.edu/classes/calciii/dipolarcoords.aspx

Double integrals in polar coordinates can be expressed as

$$
\iint_{D} f(x, y) d x d y \equiv \iint_{D} f(x, y) d A \equiv \int_{q_{1}}^{q_{2}} \int_{p_{1}}^{p_{2}} f(p \cos (q), p \sin (q)) p d p d q
$$

where the cartesian and polar coordinates are

$$
x=p \cos (q) \quad y=p \sin (q) \quad p^{2}=x^{2}+y^{2}
$$

Example 4 area of circle of radius $\boldsymbol{a}$ op002.py
$p_{1}=0 \quad p_{2}=2 \quad q_{1}=0 \quad q_{2}=2 \pi \quad \mathrm{a}=1 \quad N=999$

$$
A=\int_{0}^{2 \pi} \int_{0}^{1} p d p d q
$$

Exact area $\quad \mathrm{A}=\pi=3.141592653589793$

Simpson's [2D] rule $A=3.141592653589793$

Volume of a hemisphere of radius a op002.py

$$
\begin{aligned}
& f(x, y)=\rho^{2} \quad V=\int_{0}^{2 \pi} \int_{0}^{a} \rho^{2} d \rho d \phi \\
& a_{\mathrm{x}}=0 \quad b_{x}=2 \quad a_{y}=0 \quad b_{y}=2 \pi \quad N=299
\end{aligned}
$$

Exact volume (analytical) $\quad V=16.755160819145562$
Simpson's [2D] rule $\quad V=16.755160819145555$



## Python code op002.py

\# Libraries
import numpy as np
from numpy import pi, sin, cos, linspace
from numpy.linalg import eig
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import time
from mpl_toolkits.mplot3d import axes3d
tStart $=$ time.time()
\# >>>>> Input number of grid points: N must be odd
N = 999
\# p rho / q phi
\# >>>>> Setup RP meshgrid
p1 = 0; p2 = 2; q1 = 0; q2 = 2* pi
p = linspace(p1,p2,N)
$q$ = linspace(q1,q2,N)
$p p, q q=n p . \operatorname{meshgrid}(p, q)$
\# Mask matrix M
$\mathrm{M}=\mathrm{np} .0 n e s([\mathrm{~N}, \mathrm{~N}])$
\# Function
$\mathrm{f}=\mathrm{pp}$
\# Simpson [2D] coefficients
$\mathrm{S}=\mathrm{np} . \mathrm{ones}_{(\mathrm{N})}$
$R=n p . a r a n g e(1, N, 2) ; S[R]=4 ;$
$R=n p$.arange $(2, N-1,2) ; S[R]=2$
scx, scy = np.meshgrid(S,S)
S = scx* scy
\# Calculate integral
$h p=(p 2-p 1) /(N-1) ; h q=(q 2-q 1) /(N-1)$
h = hp * hq / 9
integral $=\mathrm{h} *$ sum(sum(pp*f*S))
print('\n Integral = ',integral)
$x x=p p^{*} \cos (q q) ; y y=p p^{*} \sin (q q)$
\#\%\% GRAPHICS
plt.rcParams['font.size'] = 10
fig = plt.figure(figsize=(4,3))
ax = plt.axes(projection='3d')
ax.plot_surface(xx, yy, f, cmap='jet', edgecolor='none', alpha=1,antialiased=True)
ax.set_xlabel('x', fontsize=12)
ax.set_ylabel('y', fontsize=12)
ax.set_zlabel('f', fontsize=12)
fig.tight_layout()
ax.view_init(17,-110,0)
\# fig.savefig('a1.png')
\#\%\%
tExe = time.time() - tStart
print(' ')
print('Execution time')
print(tExe)

