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op_rs_annular.m 
Calculation of the irradiance in a plane perpendicular to the optical axis for uniformly 

illuminated circular - annular apertures. It uses Method 3 – one-dimensional form of 

Simpson’s rule for the integration of the diffraction integral. Function calls to: 

 

 simpson1d.m          (integration) 

fn_distancePQ.m    (calculates the distance between points P and Q) 

 turningPoints.m      (max, min and zero values of a function) 

 

 

 

 

 

 

  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF 

THE FIRST KIND 

 

UNIFORMLY ILLUMINATED ANNULAR APERTURES 

 

 
The Rayleigh-Sommerfeld diffraction integral of the first kind states that the electric 

field at an observation point P can be expressed as 
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It is assumed that the Rayleigh-Sommerfeld diffraction integral of the first kind is 

valid throughout the space in front of the aperture, right down to the aperture itself. 

There are no limitations on the maximum size of either the aperture or observation 

region, relative to the observation distance, because no approximations have been 

made. 

 

The irradiance or more generally the term intensity has S.I. units of W.m
-2

. Another 

way of thinking about the irradiance is to use the term energy density as an 

alternative. The use of the letter I can be misleading, therefore, we will often use the 

symbol u to represent the irradiance or energy density.  

 

The irradiance or energy density u of a monochromatic light wave in matter is given 

in terms of its electric field E by 
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where n is the refractive index of the medium, c is the speed of light in vacuum and 

0 is the permittivity of free space. This formula assumes that the magnetic 

susceptibility is negligible, i.e. 1
r

   where 
r

  is the magnetic permeability of the 

light transmitting media. This assumption is typically valid in transparent media in the 

optical frequency range. 

 

The integration can be done accurately using any of the numerical procedures based 

upon Simpson’s rule to compute the energy density in the whole space in front of the 

aperture. 
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The geometry for the diffraction pattern from circular type apertures is shown in 

figure (1). 

 

 
 

 Fig. 1.   Circular aperture geometry.  

 

 

The radial optical coordinate vP is a scaled perpendicular distance from the optical 

axis. 
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Numerical integration of the Rayleigh-Sommerfeld diffraction integral of the first 

kind given by equation (1) for annular apertures can be done using a one-dimensional 

form of Simpson’s rule (Method 3). The aperture space is partitioned into a series of 

rings and values of the electric field EQ are set either to zero or EQmax for each ring as 

shown in figure (2) 

 
  

 Fig. 2.   An annular aperture. The radius of the aperture is a and the 

radius of the opaque disk is a1 where 
1

0 1a f a f   . 

 

Consider the diffraction from an aperture with the following default parameters: 

z: optical axis

x
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Wavelength     =  6.32810
-7

  m  

Aperture space grid points   nQ  =  360800  

Observation space grid points   nP  =  509  

   

Aperture Space 

   radius of aperture   a  =  1.00010
-4

  m  

   Energy density   uQmax  =  1.00010
-3

  W.m
-2

  

   Energy from aperture   UQ(theory) = 2.35610
-11

  J.s
-1

  

   

Observation Space 

   Max radius   rP  =  2.00010
-2

  m  

   Distance aperture to observation plane   zP = 1.000  m  

   Rayleigh distance   dRL = 6.32110
-2

  m  

   Energy: aperture to screen   UP = 2.21410
-11

  J.s
-1

  

 

Tables 1 and 2 give a summary of the optical coordinates vP for the dark rings, 

the percentage of the energy that is radiated from the aperture that is enclosed 

by the first dark ring on the observation screen, and the relative strengths of the 

peaks in the diffraction pattern. The figures show the diffraction pattern for the 

annular apertures modelled in Tables 1 and 2. 

  

Table 1.   Optical coordinate vP for the dark rings and percentage of the energy 

enclosed within the first dark ring 

f 0 0.20 0.40 0.60 0.80 0.98 

1st 3.83 3.68 3.32 2.97 2.66 2.42 

2nd 7.00 7.34 7.50 6.80 6.10 5.59 

3rd 13.33 9.69 10.36 10.63 9.58 8.72 

4th 16.46 13.72 12.67 14.19 13.06 11.92 

% energy 84 77 59 37 17 1.6 

 

Table 2.   Optical coordinate vP for the peaks and their relative strengths 

f 0 0.20 0.40 0.60 0.80 0.98 

1st 5.12 

0.0175 

5.12 

0.0303 

4.97 

0.0706 

4.65 

0.1202 

4.22 

0.1527 

3.87 

0.1621 

2nd 8.40 

0.0042 

8.44 

0.0015 

8.68 

0.0033 

8.44 

0.0305 

7.740 

0.0734 

7.08 

0.0899 

3rd 11.61 

0.0016 

11.53 

0.00376 

11.49 

0.0007 

12.08 

0.0044 

11.22 

0.0401 

10.28 

0.0621 

4th 14.78 

0.0008 

14.89 

0.0004 

14.62 

0.0028 

15.05 

0.0001 

14.70 

0.0109 

13.45 

0.0474 
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f  = 0    full circular aperture 
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 f  = 0.20     
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f  = 0.40     
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f  = 0.60     
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f  = 0.80     
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f  = 0.98     

 

 
 

  

 

As the radius of the opaque disk increases from 0 to 1: 

 The size of the Airy Disk decreases. 

 Reduction in the percentage of the energy within the Airy Disk decreases. 

 The relative strengths of the peaks do not necessarily decrease. 

 Uneven spacing between minima and maxima. 
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Double annular aperture 

 

 

 

 

 

 

 

 

 
 

 

 


