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op_rs_cxy_01.m 
Calculation of the irradiance in a plane perpendicular to the optical axis for a 

uniformly illuminated circular type apertures. The mscript can be used for annular 

apertures and for observation planes close to the aperture plane. 

 

 

 

 

op_rs_circle_rings.m 
Calculation of the irradiance in a plane perpendicular to the optical axis for uniformly 

illuminated circular type apertures. The mscript can be used for annular apertures and 

for observation planes close to the aperture plane. It uses Method 3 – one-dimensional 

form of Simpson’s rule for the integration of the diffraction integral. Function calls to: 

 

 simpson1d.m          (integration) 

fn_distancePQ.m    (calculates the distance between points P and Q) 

 turningPoints.m      (max, min and zero values of a function) 

 

 

 

 

 

 

  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF 

THE FIRST KIND 

 

UNIFORMLY ILLUMINATED CIRCULAR APERTURE 

 

 
The Rayleigh-Sommerfeld diffraction integral of the first kind states that the electric 

field at an observation point P can be expressed as 
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It is assumed that the Rayleigh-Sommerfeld diffraction integral of the first kind is 

valid throughout the space in front of the aperture, right down to the aperture itself. 

There are no limitations on the maximum size of either the aperture or observation 

region, relative to the observation distance, because no approximations have been 

made. 

 

The irradiance or more generally the term intensity has S.I. units of W.m
-2

. Another 

way of thinking about the irradiance is to use the term energy density as an 

alternative. The use of the letter I can be misleading, therefore, we will often use the 

symbol u to represent the irradiance or energy density.  

 

The irradiance or energy density u of a monochromatic light wave in matter is given 

in terms of its electric field E by 
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where n is the refractive index of the medium, c is the speed of light in vacuum and 

0 is the permittivity of free space. This formula assumes that the magnetic 

susceptibility is negligible, i.e. 1
r

   where 
r

  is the magnetic permeability of the 

light transmitting media. This assumption is typically valid in transparent media in the 

optical frequency range. 

 

The integration can be done accurately using any of the numerical procedures based 

upon Simpson’s rule to compute the energy density in the whole space in front of the 

aperture. 
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The geometry for the diffraction pattern from circular type apertures is shown in 

figure (1). 

 

 
 

 Fig. 1.   Circular aperture geometry.  

 

 

The radial optical coordinate vP is a scaled perpendicular distance from the optical 

axis. 

 

  (3) 

2 2

2 2 2

2
sin sin P P

P

P P P

x y
v a

x y z


 




 

 
 

 

 

In the far-field or Fraunhofer region, the numerical integration of equation (1) gives 

results that are identical to the analytical expression for the energy density given by 

equation (3) 
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The diffraction formula for the electric field given by equation (1) is valid in the near-

field or the Fresnel region whereas equation (3) is only valid for observation points at 

large distances from the aperture plane. 
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FRAUNHOFER DIFFRACTION – FAR FIELD 

 
The Fraunhofer diffraction pattern for the circular aperture is circularly symmetric and 

consists of a bright central circle surrounded by series of bright rings of rapidly 

decreasing strength between a series of dark rings. The bright and dark rings are not 

evenly spaced. The bright central region is known as the Airy disk. 

 

 

 
 

 Diffraction pattern as computed using  op_rs_cxy_01.m. The image is 

like a black and white time exposure photograph of the diffraction 

pattern that would be observed on a screen for a uniformly illuminated 

circular aperture. The bright centre spot corresponds to the zeroth order 

of diffraction and is known as the Airy Disk. 
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 The irradiance patterns along the X and Y axes for a circular aperture. 

The lower plot has a log scale for the irradiance  
10

10log ( )
dB

I I . Since 

the pattern is symmetrical, the irradiance variation is the same in the X 

and Y directions. op_rs_cxy_01.m 

 

 

In the far field, the Fraunhofer diffraction pattern for the circular aperture is circularly 

symmetric and consists of a bright central circle surrounded by series of bright rings 

of rapidly decreasing strength between a series of dark rings. The bright and dark 

rings are not evenly spaced. The bright central region is known as the Airy disk. It 

extends to the first dark ring at vP = 3.831 (the first zero of the Bessel function of the 

first kind). 
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Figure (2) shows the energy density distribution in the far-field for a uniformly 

illuminated circular aperture that was calculated using Method 3 (one-dimensional 

form of Simpson’s Rule) with the mscript  op_rs_circle_rings.m.   

 

A summary of the input parameters used in the modelling is shown in the Matlab 

Command Window 

 

Parameter summary  [SI units] 

wavelength [m]  =  6.328e-07  

nQ  =  551000  

nP  =  509  

   

Aperture Space 

radius of aperture [m]  =  1.000e-04  

energy density [W/m2] uQmax  =  1.000e-03  

energy from aperture [J/s]   UQ(theory) = 3.142e-11  

   

Observation Space 

max radius rP [m] =  2.000e-02  

distance aperture to observation plane [m]   zP = 1.000e+00  

Rayleigh distance  [m]   d_RL = 6.321e-02  

   

energy: aperture to screen  [J/s]   UP = 3.043e-11  

max energy density  [W./m2]   uPmax = 2.469e-06 

 

Elapsed time is 93.548646 seconds. 

 
 

 

  



Doing Physics with Matlab     op_rs1_circle.docx 7 

 
Fig. 2.   The energy density distribution for a circular aperture in the far-

field.  The lower plots have a log scale for the irradiance  

10
10log ( )

dB
I I .  op_rs_circle_rings.m 

 

 

  

 

Fig.3.   Diffraction pattern for a circular aperture in the far-field. 

Left: The image represents a black and white time exposure photograph 

of the diffraction pattern that would be observed on an observation 

screen. The bright centre spot corresponds to the zeroth order of the 

diffraction pattern and is known as the Airy Disk. Right: Scaled Surf 

Plot of the diffraction pattern. 
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The mscript op_rs_circle_rings.m  calls the function  turningPoints.m  to estimate the 

optical coordinates for the zeros in the diffraction pattern and the positions and 

relative strengths of the maxima in the diffraction pattern. The results are displayed in 

the Command Window. 

 

 Radial coordinates - zero positions in energy density 
       3.831  
       6.997  
       10.163  
       13.329  
       16.455  
       19.620  
    
 Radial coordinates - max positions in energy density 
 Relative intensities of peaks       
       5.121         0.0175  
        8.404        0.0042  
        11.609      0.0016  
       14.775      0.0008  
       17.940      0.0004 
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Energy enclosed within the dark rings of the diffraction pattern 
 

Since Method 3 is based upon a one-dimensional form of Simpson’s rule where the 

integration is over a series of rings of increasing radius and SI units are used, it is 

possible to calculate the energy enclosed within a ring of a specified radius on the 

observation screen.  Figure (4) shows the energy UP enclosed with circles of 

increasing radius which is given by the optical coordinate vP. Table 1 gives the energy 

enclosed within each dark ring. The values in Table 1 were estimated using the 

Matlab Data Cursor Function in the Figure Window for the plot shown in figure (4). 

 
Fig. 4.   Energy enclosed with a rings of increasing radius on the 

observation screen in the far field for a uniformly illuminated circular 

aperture.  

 

Table 1.   Energy enclosed within a circle defined by the radii of 

each dark ring. The “flat spots” shown in figure (4) correspond to the 

dark rings. 

Dark rings  vP Energy enclosed 

(%) 

3.83 83.8 

7.00 91.1 

10.2 93.9 

13.3 95.3 

16.5 96.2 

19.6 96.9 

 

About 84% of the energy from the aperture to the observation screen is enclosed 

within the Airy Disk.  
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Doubling the radius a of the aperture 
 

The effect on the energy density distribution by doubling the radius a of the aperture 

is shown in figure (5). The upper plots are for a1 = 1.0010
-4

 m and the lower plots for 

the larger radius a2 = 2.0010
-4

 m.  

 

 
 

 
Fig. 5.   Energy density plots showing the changes in the diffraction 

pattern when only the radius is doubled. The upper plots are for a1 = 

1.0010
-4

 m and the lower plots for the larger radius a2 = 2.0010
-4

 m.  
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Aperture radius 

a1 = 1.00010
-4

   m a2 = 2.00010
-4

   m  a2 / a1 = 2.00 

 

Energy emitted by aperture 

UQ1 = 3.14210
-11

   J/s UQ2 = 1.25710
-10

   J/s  UQ2 / UQ1 = 4.00 

 

Peak energy density (centre peak) 

uPmax1 = 2.46910
-6

  W.m
-2

   uPmax2= 3.93810
-5

   W.m
-2

  uPmax1 / uPmax1 = 16.1 

 

Position of the first dark ring 

xP1 = 3.84610
-3

   m xP2 = 1.92310
-3

   m  xP2  / xP1 = 0.50 

 

 

 4 times more energy is radiated from the aperture since the energy emitted is 

proportional to the area of the aperture ( a
2
). 

 

 The strength of the central peak increases by a factor of 16. 

 

 The radius of the Airy Disk is halved - the diffraction pattern is narrow when 

the aperture size is increased. 

 

 There is no change in the diffraction pattern when the normalized irradiance is 

plotted against the optical coordinate. 
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Doubling the distance zP from the aperture to the observation 

screen 
 

The effect on the energy density distribution by doubling the distance zP from the 

plane of the aperture to the observation screen is shown in figure (6). The upper plots 

are for zP1 = 1.000 m and the lower plots for the longer distance zP2 = 2.000 m.  

 

 
 

Fig. 6.   Energy density plots showing the changes in the diffraction 

pattern when the aperture to screen distance is doubled.  

The upper plots are for zP1 = 1.000 m and the lower plots for the larger 

distance  zP2 = 2.000 m.  
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Aperture to screen distance 

zP1 = 1.000   m zP2 = 2.000   m  zP2 / zP1 = 2.00 

 

Peak energy density (centre peak) 

uPmax1 = 2.46910
-6

  W.m
-2

   uPmax2= 6.17410
-7

   W.m
-2

  uPmax1 / uPmax1 = 0.250 

 

Position of the first dark ring 

xP1 = 3.84610
-3

   m xP2 = 7.69210
-3

   m  xP2  / xP1 = 2.00 

 

 

 The peak energy density is reduced by a factor of 4. When the screen is a 

large distance from the aperture as in Fraunhofer diffraction, the aperture is 

like a point source and the energy density obeys the inverse square law for 

increasing distances between the aperture and the source.  

 

 The radius of the Airy Disk is doubled - the diffraction pattern is broader and 

flatter. 

 

 There is no change in the diffraction pattern when the normalized irradiance is 

plotted against the optical coordinate. 
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FRESNEL DIFFRACTION – NEAR FIELD 

 
The Rayleigh-Sommerfeld diffraction integral of the first kind given by equation (1) 

is valid right up to the aperture for the calculation of the electric field at an 

observation point P. 

 

The transition from Fraunhofer diffraction to Fresnel diffraction can be expressed in 

terms of the Rayleigh distance. The Rayleigh distance in optics is the axial distance 

from a radiating aperture to a point an observation point P at which the path difference 

between the axial ray and an edge ray is λ / 4. A good approximation of the Rayleigh 

Distance 
RL

d  is 

 
2

4
RL

a
d


  

where a is the radius of the aperture. The Rayleigh distance is also a distance beyond 

which the distribution of the diffracted light energy no longer changes according to 

the distance zP from the aperture.  

 

 zP  <  dRL           Fresnel diffraction 

 

 zP  >  dRL           Fraunhofer diffraction. 

 

If we consider a circular aperture of radius a, then much of the energy passing through 

the aperture is diffracted through an angle of the order / a  from its original 

propagation direction. When we have travelled a distance 
RL

d from the aperture, 

about half of the energy passing through the opening will have left the cylinder made 

by the geometric shadow if /
RL

a d  . Putting these formulae together, we see that 

the majority of the propagating energy in the "far field region" at a distance greater 

than the Rayleigh distance 
2

4 /
RL

d a  will be diffracted energy. In this region then, 

the polar radiation pattern consists of diffracted energy only, and the angular 

distribution of propagating energy will then no longer depend on the distance from the 

aperture. 
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Command Window summary of the parameters used to model Fresnel 

diffraction from the circular aperture 

 

 wavelength [m]  =  6.328e-07  

nQ  =  781200  

nP  =  809  

Aperature Space 

radius of aperture [m]  =  1.000e-04  

energy density [W/m2] uQmax  =  1.000e-03  

energy from aperture [J/s]   UQ(theory) = 3.142e-11  

   

Observation Space 

max radius rP [m] =  1.800e-04  

distance aperture to observation plane [m]   zP = 6.500e-04  

Rayleigh distance  [m]   d_RL = 6.321e-02  

   

energy: aperture to screen  [J/s]   UP = 3.133e-11  

max energy density  [W./m2]   uPmax = 1.788e-03 

 

Figures (7) and (8) show the Fresnel diffraction pattern for the parameters 

given above. 

 

 
Fig. 7.   Fresnel Diffraction pattern. 
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Fig. 8.   Diffraction pattern in the near-field showing a set of bright and 

dark rings but it is very different from the Fraunhofer diifraction pattern. 

In this example, there is no bright centre spot, in fact, the centre region 

is dark. 

 

Since the distance between the aperture and observation screen is so small, there is 

very little spreading of the light by diffraction. 95% of the energy density is 

concentrated in a circle of radius equal to aperture radius on the observation screen as 

shown in figure (9).  

 
Fig. 9.   % energy enclosed within a circle of radius xP on the 

observation screen. 95% of the energy is concentrated in a circle with a 

radius equal to the radius of the aperture a = 1.0010
-4

 m. 

 

 


