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DOING PHYSICS WITH MATLAB 

 

MODELLING A MASS / SPRING SYSTEM 

Free oscillations, Damping, Force oscillations 

(impulsive and sinusoidal)  

 

Ian Cooper 

matlabvisualphysics@gmail.com 

 

DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS 

https://github.com/D-Arora/Doing-Physics-With-

Matlab/tree/master/mpScripts 

 

https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrg

SvUMc89ksF9Jb 
 

 
osc_harmonic01.m 

The script uses the finite difference method to solve the equation 

of motion for a mass / spring System. The displacement, velocity, 

acceleration and kinetic energy are computed. The potential 

energy and total energy of the System are also computed.  The 

mass and spring constant can be changed within the script. In 

running the script, the user inputs through the Command Window 

the values for the damping constant, the type of driving force, the 

driving forced frequency and maximum simulation time interval. 

The results off the computation are presented graphically. 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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osc_harmonic02.m 
Plot of the response curve (amplitude A  vs  driving frequency fD / 
f0) for the oscillations of a mass / spring System. The peak 
response of the System is dependent upon the damping. 
 
 

ad_001.mlapp    (App Designer) 
GUI for investing the mass spring system 
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math_ode_04.m 

The Script can be used to help you write your own code in using 

the Matlab ode solvers for second-order ordinary differential 

equations.  There is a suite of Matlab ode functions which are 

suitable for just about any type of problem. As an example, the 

function ode45 is used to solve the equation of motion for a 

driven-damped mass/spring system.  The ode45 works better for 

nonstiff* problems. It may be beneficial to test more than one 

solver on a given problem. Type help ode45 in the Command 

Window to see a list of the ode solvers that you may use. The 

model parameters are assigned in the INPUT section of the Script. 

The Script can be easily changed so that the inputs are entered via 

the Command Window or the Script can be saved as a Live-Script. 

 

https://d-arora.github.io/Doing-Physics-With-

Matlab/mpDocs/math_ODE_A.htm  

https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/math_ODE_A.htm
https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/math_ODE_A.htm
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INTRODUCTION 

The response of a mass (m) / spring (k) System can be investigated 

using the scripts osc_harmonic01.m and osc_harmonic02.m. The 

damping of the System is determined by the damping coefficient 

b and the oscillations are determined by the driving force FD(t). 

The equation of motion for the System is 

 

(1) 
( )

( ) ( ) ( )D

dx t
m a t k x t b F t

dt
= − − +   

 

The differential equation is solved using the finite difference 

method (see Appendix).  
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Free oscillations with or without damping 

 

The System is given an initial displacement and the subsequent 

motion computed. 

 

The resonance or natural frequency is assumed to be given by  

 

 (2) 0 0 0 0

1
2

2

k k
f f

m m
  


= = =   

 

where m is the mass of the oscillating object and k is the spring 

constant. 

 

The default values are 

 
-1

0 0

0.506606 kg 20.00 N.m

1.000 Hz 1.000 s

m k

f T

= =

 = =
 

 

You can explore the free oscillations of the System, 

underdamping, critical damping and overdamping. 
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Impulsive driving force 

 

The System is disturbed from its equilibrium position for a short 

time interval by the action of a constant force which acts to give a 

non-zero displacement of the mass. The System then oscillates at 

its natural frequency of vibration about an equilibrium position 

which is determined by the applied impulsive force. 

 



 11 

 

  



 12 

 

 

 

 

  



 13 

Sinusoidal driving force 

 

You can explore the response of the System to a sinusoidal driving 

force. You can change the frequency of the driving force and see 

immediately the response of the System. The System will vibrate 

at the frequency of the driving force. When the driving frequency 

is near the natural frequency, large amplitude oscillates result 

with the maximum amplitude occurring very near the natural 

frequency as given by equation 2. However, the peak amplitude is 

slightly affected by the damping parameter b. This phenomenon is 

called resonance. 

 

With zero damping, energy is continuously added to the System 

and the amplitude of the oscillations increases with time. When 

there is damping, a steady state situation is achieved in which the 

amplitude of the oscillation reaches a fixed value. 
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The response curve for the oscillations of the mass / spring 

System is given by the equation 

 

 (3) 

( ) ( )
2 22

2max
D

D D

F
A f

k m b

 

 

= =

− +

 

 

 The response curve is computed using the script 

osc_harmonoic02.m 
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Note: the peak amplitude is not equal to the natural frequency of 
vibration given by equation 2 when the System is damped.  
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APPENDIX   Finite Difference Method 

 

The equation of motion to be solved is 

 

 (4) 
2

2

( ) ( )
( ) ( )D

d x t dx t
m k x t b F t

dtdt
= − − +  

 

The first and second derivatives for the velocity and acceleration 

can be approximated at the time step n by the equations 

 

         
( ) ( 1) ( 1)

2

dx t x n x n

dt t

+ − −
=


 

     (5)     

       
2

2
2

( ) ( 1) 2 ( ) ( 1)d x t x n x n x n

dt t

+ − + −
=


 

 

Substituting our approximations into the equation of motion, and 

after some tedious algebra, we get the displacement at time step 

(n+1) 

  

        (6) 1 2 3( 1) ( ) ( 1) ( )Dx n c x n c x n c F n+ = + − +  
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where 

 (7)          

( )

( )( )
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/

b t
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c

c

t m
c

c


= −
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 −
=


=

 

To start the computational procedure, the initial value of the 

displacement x(1) at time step n = 1 is specified and then the 

value of the displacement at time step n = 2 is approximated. 

Equation 6 is then used to calculate the displacement at all later 

time steps. 

 

% Coefficients 

c0 = 1 + (b/m)*(dt/2); 

c1 = (2-(k/m)*dt*dt)/c0; 

c11 = (2-(k/m)*dt*dt); 

c2 =((b/m)*(dt/2)-1)/c0; 

c3 = (dt*dt/m)/c0; 

  

%  Finite difference Calculations 

%  Position 

for c = 3 : nmax 

   x(c) = c1*x(c-1) + c2*x(c-2) + c3*FD(c-1); 

end 
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Once we know the displacement at all time steps, it is a simple 

matter to calculate the velocity, acceleration, kinetic energy of the 

mass and the potential energy and total energy of the System. 

 

% Velocity 
v(1) = (x(2)-x(1))/dt; 
v(nmax) = (x(nmax)- x(nmax-1))/dt; 
for n = 2 : nmax-1 
   v(n) = (x(n+1)- x(n-1))/(2*dt); 
end 

  

% Acceleration 
a(1) = (v(2)-v(1))/dt; 
a(nmax) = (v(nmax)- v(nmax-1))/dt; 
for n = 2 : nmax-1 
   a(n) = (v(n+1)- v(n-1))/(2*dt); 
end 

  

% Energies 
K = (0.5*m).*v.^2; 
U = (0.5*k).*x.^2; 
E = K + U; 

 


