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qp_rules.m 
Calculates for a hydrogen atom, the transition rate and lifetime for a transition from an initial 

state  (n1 l1 ml1) to the final state (n2 l2 ml2). The azimuthal wavefunction is given by an 

analytical expression, the angular wavefunction is found using the Matlab command 

legendre and the radial wavefunction is solved by the Matrix Method using the function 

qp_fh.m. Integrations use the function simpson1d.m. The mscript also can be used to create 

animated gifs for the oscillation of the probability of compound states. The states have to be 

changed within the mscript by editing the statement   state = [5 1 1 1 0 0]; The first three 

numbers are n, l, ml for State 2 (final State) and the second set of three numbers give the n, m, 

ml values for State 1 (initial State). 

 

qp_fh.m      included within qp_rules.m 
Function used to solve the radial Schrodinger Equation for the hydrogen atom 

 
     [ EB(1), R1, r] = qp_fh(n(1), L(1),num, r_max); 
     [ EB(2), R2, r] = qp_fh(n(2), L(2),num, r_max); 

 

Within this mscript you can change the maximum radial coordinate and the number of data 

pints for the calculations. 

 

simpson1d.m      (must have an odd number of grid points)   included within qp_rules.m 
Function for doing integrations using Simpson’s rule, for example 
 % Normalize radial wavefunctions 

N(1) = simpson1d((R1 .* R1),0,max(r)); 

N(2) = simpson1d((R2 .* R2),0,max(r)); 

R1 = R1 ./ sqrt(N(1)); 

R2 = R2 ./ sqrt(N(2)); 

 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/mscripts
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In the input section of the script qp_rules.m you specify:  

 

• The initial and final states. 

• The saving of an animated gif of the probability cloud. 

• The display of the animation of the probability cloud. Can select a 

contour plot or a surf plot. 

• The maximum radial distance for the radial wavefunction r_max. This is 

an important variable for accurate predicts of the lifetime of the excited 

state. The value of r_max cannot be too small or too large when 

implementing the numerical procedure to solve the radial wave equation. 

Figure 1 shows the plot of the radial function functions for the initial and 

final states for one simulation with r_max = 30x10-9 m. The plots show 

that the wavefunctions approaches zero in an appropriate fashion. The 

calculated lifetime is 1168 ns.  Figure 2 shows the wavefunction plots for 

r_max=10x10-9 m. The tail is not a good representation of the 

wavefunction and the calculated of the lifetime is 246 ns and is not an 

accurate result.  
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 Fig. 1.   Accurate plots of the wavefunctions when r_max = 30x10-9 m. 

 

Fig. 2.   Incorrect plots of the wavefunctions when r_max = 10x10-9 m.  
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Excited states and transition rates in a hydrogen atom 

 

If a hydrogen atom is excited to a higher energy level, it will at some later time 

spontaneously make transitions to successively lower energy levels. In a 

transition from a higher energy state (1) to a lower energy state (2), the 

frequency and wavelength of the emitted photon is 
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The discrete wavelengths emitted in all transitions that take place constitute the 

lines in the emission spectrum. But, not all possible transitions take place. 

Photons are observed only with frequencies corresponding to transitions 

between states whose quantum numbers satisfy the selection rules 

 

 (2) 1 0 or 1
l

l m       

 

These selection rules are found to apply to all one-electron atoms. 

 

Why are some transitions forbidden? 

 

We can answer this question by using a mix of classical and quantum physics. 

 

A transmission rate Rt is the probability per second that an atom in a certain 

energy level will make a transition to some other lower energy level. 
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Typical allowed transition rates are ~108 s-1. This means that in about 10-8 s, the 

probability that the transition has occurred is about one. This time interval is 

called the lifetime tL. 

 (3) 
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The eigenfunctions represent stationary states, that is, they do not vary with 

time. However, for compound states where the wavefunction is a combination 

of two stationary states of energies E1 and E2, then, the probability density 

function contains a term that oscillates in time at frequency 
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Hence, the electron charge distribution must also oscillate at a frequency f12 and 

this is precisely the frequency of the emitted photon in the transition between 

the states. 

 

View animations of compound states at  

 

  http://www.physics.usyd.edu.au/teach_res/mp/doc/qp_se_time.htm 

 

The atom’s evolving charge distribution can be modeled as an oscillating 

electric dipole. 

 

 

 



p qr

r
qq

http://www.physics.usyd.edu.au/teach_res/mp/doc/qp_se_time.htm
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The electric dipole moment p for the oscillating charge distribution is the 

product of the electron charge e and the expectation value of its displacement 

r value from the nucleus. 

 

A charge distribution that is constant in time will not emit electromagnetic 

radiation, while a charge distribution with an oscillating electric dipole moment 

emits radiation at the frequency of the oscillator. The oscillating electric dipole 

is the most efficient radiator of electromagnetic radiation. 

 

We can use a classical formula for the rate of emission of energy by an 

oscillating electric dipole 
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where p is the amplitude of its oscillating electric dipole moment and f is the 

frequency of the oscillation. Rt is the atomic transition rate, it gives the 

probability per second that a photon is emitted and thus it is equal to the 

probability per second that the atom has undergone the transition. 

 

Relative to the Origin at the nucleus, the atomic electric dipole moment of a one 

electron atom is 

 

 (5) p e r   

 

where r  is the position vector from the nucleus at the Origin. 
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We can calculate the expectation value of p to obtain an expression for the 

amplitude p of the oscillating electric dipole moment of the atom in a compound 

state as shown in the following arguments: 

 

 (6)    1 1 1 2 2 2
exp / exp /i E t i E t      

 

 (7) 
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      

 

where 
1

 and 
2

 are both normalized wavefunctions. 

 

The time independent parts of the wavefunctions are of the form 

  

 (8)              , , ( ) ( ) / ( )r R r g r r g r r R r              

 

where ( )g r is the solution of the radial Schrodinger Equation 

 

 (9) 
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2

( )
( ) ( ) ( )
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m dr
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The solutions ( ) for the angular equation are polynomials in cos  known as 

the associated Legendre polynomials (cos )lm

l
P    

where l = 0, 1, 2, … and ml = 0, 1, 2, 3, … .      l
m l  
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The normalized solution to equation (6) can be written as 

 

  (10)     cosl

l

m

lm l
N P    

 

where 
llm

N is an appropriate normalization constant such that 
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0

cos sin 1l
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m

lm l
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The normalized solution of the azimuthal equation is 

 

 (12)   
1

( ) exp
2

l
i m 


                          

 

The time independent part of the normalized wavefunctions that can be 

expressed as 

  

 (13)         , , ( ) / cos exp / 2l

l

m

lm l l
r g r r N P i m        

 

where ( )g r is also normalized and both g(r) and  coslm

l
P  are real quantities.  

 

Since the probability of finding the electron is 1, then 

 

 integrating over a volume element 2
dV r dr d d   
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The electric dipole moment can be expressed as 

 

 (14)     
2

* * 2

2 1 2 1
0 0 0

sinp e r dV e r r d d dr
 
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This is a vector quantity and has components (px, py,  pz) where 

   

 (15)  sin cos sin sin cosx r y r z r        

 

       (16) 
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Let 
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0
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  Therefore 

   
x Rx Tx Px

p e I I I  

    (18)  y Ry Ty Py
p e I I I  

   
z Rz Tz Pz

p e I I I  

 

 (19)  2 2 2 2

x y z
p p p p    

 

 (20)  2 2 2

x y z
p p p p    

 

The radial wavefunction g(r) can be found numerically by solving the radial 

equation (equation 9) by the Matrix Method and the associated Legendre 

functions (cos )lm

l
P   can be evaluated using the Matlab command legendre.  The 

normalization constants can be found by numerical integration using Simpson’s 

rule. The integrals in the set of equations (17) are computed numerically to find 

the numerical value of the amplitude of the oscillating electric dipole moment p. 

Then from equation (3) and equation (4) the transition rate Rt and tL can be 

calculated respectively. A summary of the calculations is given in Table 1. 

 

The mscript qp_rules.m is used for the electric dipole calculations. 

  

http://www.physics.usyd.edu.au/teach_res/mp/doc/qp_se_matrix.pdf
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Table 1.  Data for the transition from a higher energy level to a lower level. The 

initial and final states are given by the set of quantum numbers (n l ml). The 

mscript  qp_rules.m  is used to calculate the binding energies of the two states (EB 

= - E), the integrals given by equation (17), the lifetime tL of the higher energy 

state and the wavelength  of the photon emitted in the transition. Only the 

integral IP components for the azimuthal coordinate are shown in the table. 

Published values are given for the lifetime so that the model results can be 

compared to accepted values. Reference*: 

 

 http://www.nist.gov/srd/upload/jpcrd382009565p.pdf 

 

 

final 

state 

n2 l2 ml2 

initial 

state 

n1 l1 ml1 

lifetime 

tL (ns) 

web* 

lifetime 

tL (ns) 
simulation 

IPx IPy IPz EB2 

(eV) 

EB1 

(eV) 
 

(nm) 

 

Forbidden transitions   | l |  1  

1s  (1 0 0) 2s  (2 0 0) ~  ~  0 0 0 13.58 3.40  

1s  (1 0 0) 3s  (3 0 0) ~  ~  0 0 1 13.58 1.51  

1s  (1 0 0) 3d  (3 2 0) ~  ~  0 0 0 13.58 1.51  

1s  (1 0 0) 3d  (3 2 1) ~  ~  0.5 0 0 13.58 1.51  

1s  (1 0 0) 3d  (3 2 2) ~  ~  0 0 0 13.58 1.51  

3p  (3 1 1)  4f  (4 3 0) ~  ~  0.5 0 0 1.51 0.85  

 

Forbidden transitions   | ml |  0 or 1 

3d  (3 2 0) 4d  (4 3 2) ~  ~  0 0 0 1.51 0.85 1877 

 

Allowed transitions   | l | = 1   and    | ml | = 0 or 1 

1s  (1 0 0) 2p  (2 1 0) 1.60 1.60 0 0 1 13.58 3.40 122 

1s  (1 0 0) 2p  (2 1 1)  1.60 0.5 0 0 13.58 3.40 122 

1s  (1 0 0) 3p  (3 1 0) 5.98 6.00 0 0 1 13.58 1.51 102 

1s  (1 0 0) 3p  (3 1 1)  6.00 0.5 0 0 13.58 1.51 102 

1s  (1 0 0) 4p  (4 1 0) 14.5 12.1 0 0 1 13.58 0.85 97 

2s  (2 0 0) 3p  (3 1 0) 44.5 44.6 0 0 1 3.40 1.51 658 

2s  (2 0 0) 3p  (3 1 1)  44.6 0.5 0 0 3.40 1.51 658 

2s  (2 0 0) 4p  (4 1 0) 103.4 103.5 0 0 1 3.40 0.85 487 

2s  (2 0 0) 4p  (4 1 1)  103.5 0.5 0 01 3.40 0.85 487 

2p  (2 1 0) 3s  (3 0 0) 475 478 0 0 1 3.40 1.51 657 

2p  (2 1 1) 3s  (3 0 0)   478 0.5 0 0 3.40 1.51 657 

2p  (2 1 0) 3d  (3 2 0)  23.3 0 0 1 3.40 1.51 657 

2p  (2 1 0) 3d  (3 2 1)  31.0 0.5 0 0 3.40 1.51 657 

2p  (2 1 1) 3d  (3 2 0)  93.1 0.5 0 0 3.40 1.51 657 

2p  (2 1 1) 3d  (3 2 1)  31.0 0 0 1 3.40 1.51 657 

2p  (2 1 0) 4s  (4 0 0) 1171 1168 0 0 1 3.40 0.85 487 

2p  (2 1 1) 4s  (4 0 0)  1168 0.5 0 0 3.40 0.85 487 

 

  

http://www.nist.gov/srd/upload/jpcrd382009565p.pdf
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From Table 1, it is quite clear that not all transitions give rise to spectral 

emissions where spectral lines are not observed or very weak. For the case of 

dipole radiation, the transition rates are zero when the dipole matrix elements 

are zero. This gives rise to a set of selection rules which are conditions on the 

quantum numbers of the eigenfunctions of the initial state (state 1) and the final 

state (state 2) energy levels. For the dipole radiation, allowed transitions ( p  0 ) 

are given by the selection rules 

  

 Allowed transitions  1l      and    0 or 1
l l

m m      

 

Transitions rates of atom are typically Rt ~ 108 s-1. 

 

 

If these conditions are not satisfied, p = 0  and the transition is called forbidden.  

 

Selection rules arise because of the symmetry properties of the oscillating 

charge distribution of the atom. The compound state formed by the 

superposition of two stationary states must have an oscillating charge 

distribution which oscillates as the same frequency of the emitted photon. Also, 

for the system of the atom and the emitted photon, angular momentum must be 

conserved. The angular momentum of the emitted photon in units of  is one, 

hence the change in the angular momentum quantum number of the atom should 

be 1l   . 

 

Selection rules do not absolutely prohibit transitions that violate them, but only 

make such transitions very unlikely. The transition may occur through some 

other mechanism such as magnetic dipole moment radiation or electric 

quadrupole moment radiation.  
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From the links below, you can view schematic animations of compound states 

showing the variation in electron probability for the oscillations between two 

stationary states. The animations were created with the mscript  qp_rules.m. 

Two frames of one of the animations are shown below 

 
Transitions Type of animated plot 

 

(1 0 0)      (511) 

 

 

pcolor 

 

surf 

 

(3 2 0)      (4 1 1) 

 

 

pcolor 

 

surf 

 

(2 0 0)      (3 1 0) 

 

 

pcolor 

 

surf 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://www.physics.usyd.edu.au/teach_res/mp/images/ag_100511p.gif
http://www.physics.usyd.edu.au/teach_res/mp/images/ag_100511s.gif
http://www.physics.usyd.edu.au/teach_res/mp/images/ag_320411p.gif
http://www.physics.usyd.edu.au/teach_res/mp/images/ag_320411s.gif
http://www.physics.usyd.edu.au/teach_res/mp/images/ag_200310p.gif
http://www.physics.usyd.edu.au/teach_res/mp/images/ag_200310s.gif
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A summary of the numerical quantities is shown in a Figure Window 

 

 
 

Reference 

 

http://farside.ph.utexas.edu/teaching/qmech/Quantum/node122.html 

 

https://www.nist.gov/sites/default/files/documents/srd/jpcrd382009565p.pdf 
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