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The Matlab script se_fdm.m is used to solve the one-dimensional time independent  

Schrodinger Equation using a finite difference approach where E is entered manually to 

find acceptable solutions. 

 

 

SCHRODINGER EQUATION  

 

On an atomic scale, all particles exhibit a wavelike behavior. Particles can be 

represented by wavefunctions which obey a differential equation, the Schrodinger 

Wave Equation which relates spatial coordinates and time.  You can gain valuable 

insight into quantum mechanics by studying the solutions to the one-dimensional time 

independent Schrodinger Equation.  

 

A wave equation that describes the behavior of an electron was developed by 

Schrodinger in 1925. He introduced a wavefunction ( , , , )x y z t . This is a purely 

mathematical function and does not represent any physical entity. An interpretation of 

the wave function was given by Born in 1926 who suggested that the quantity 

2
( , , , )x y z t represents the probability density of finding an electron. For the one 

dimensional case, the probability of finding the electron at time t somewhere between x1 

and x2 is given by 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/mscripts
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(1) 
2

1

*Prob( ) ( , ) ( , )
x

x
t x t x t dx    

where * is the complex conjugate of the wavefunction . The value of Prob(t) must 

lie between 0 and 1 and so when we integrate over all space, the probability of finding 

the electron must be 1.  

  *( , ) ( , ) 1x t x t dx



    

In this instance the wavefunction is said to be normalized. 

 

We can see how the time-independent Schrodinger Equation in one dimension is 

plausible for a particle of mass m, whose motion is governed by a potential energy 

function U(x) by starting with the classical one dimensional wave equation and using 

the de Broglie relationship  

 Classical wave equation  
2 2

2 2 2

( , ) 1 ( , )
0

x t x t

x v t

 
 

 
 

 

 Momentum (de Broglie) 
h

p mv k


    

 Kinetic energy   21
2

K mv  

 Total energy   ( ) ( )E K x U x   

 Wavefunction   ( , ) ( ) i tx t x e       periodic in time for t coordinate 

    

Combining the above relationships, the time-independent Schrodinger Equation in 

one dimension can be expressed as 

 (2) 
2 2

2

( )
( ) ( ) ( )

2

d x
U x x E x

m dx


          

 

Our goal is to find solutions of this form of the Schrodinger Equation for a potential 

energy function which traps the particle within a region. The negative slope of the 

potential energy function gives the force on the particle. For the particle to be bound the 

force acting on the particle is attractive. The solutions must also satisfy the boundary 

conditions for the wavefunction. The probability of finding the particle must be 1, 

therefore, the wavefunction must approach zero as the position from the trapped region 

increases. The imposition of the boundary conditions on the wavefunction results in a 

discrete set of values for the total energy E of the particle and a corresponding 
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wavefunction for that energy, just like a vibrating guitar string which has a set of 

normal modes of vibration in which there is a harmonic sequence for the vibration 

frequencies.  

 

The Schrodinger Equation can be solved analytically for only a few forms of the 

potential energy function. In this paper we will consider the finite difference method in 

which the second derivative is approximated as a difference formula.  

 

 

FINITE DIFFERENCE METHOD  

One can use the finite difference method to solve the Schrodinger Equation to find 

physically acceptable solutions. One can also use the Matlab ode functions to solve the 

Schrodinger Equation but this is more complex to write the m-script and not as versatile 

as using the finite difference method. The finite difference method allows you to easily 

investigate the wavefunction dependence upon the total energy. The ‘heart’ of the finite 

difference method is the approximation of the second derivative by the difference 

formula 

 (3) 
2

2 2

( ) ( ) 2 ( ) ( )d x x x x x x

dx x

      



 

and the Schrodinger Equation is expressed as 

 (4)  
2

2

2 2

( ) 2
( ) ( ) ( ) ( )

d x m
k x x k x E U x

dx




 
    

 
 

 

We will consider an electron trapped in a potential well of width L and depth U0 as 

shown in Figure 1. In regions where E > U(x), k(x) is real and ( )x has a sinusoidal 

shape and this corresponds to the classical allowed region (kinetic energy K > 0). In 

regions where E < U(x), k(x) is imaginary and ( )x has an exponential increasing or 

decreasing nature and this corresponds to the classical forbidden (kinetic energy K < 0). 

The function 
2

2

d

dx


is the curvature of the wavefunction and its negative is a measure of 

the kinetic energy of the particle (Figure 1). 
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 Fig. 1.  Potential well defined by the potential energy function U(x). 

The bound particle has total energy E and its wavefunction is ( )x .   

 

You can use a shooting method to find E that satisfies both the Schrodinger Equation 

and the boundary conditions. We start with min( ) 0x  and a given value for E and 

solve the Schrodinger Equation. The value of E is increased or decreased until the other 

boundary condition, max( ) 0x  is satisfied. If the end boundary condition at x = xmax is 

not satisfied then the wavefunction will exponentially diverge ( max ( )x x x  ). 

When a solution is found, the wavefunction decreases exponentially towards the zero as 

shown in Figure 2. 

 

 

 Fig. 2. Physically acceptable solutions are found only when the 

wavefunction ( )x converges to zero at the extreme values of x. The 

depth of the well is -400 eV and the width 0.1 nm.   [se_fdm.m].   

 

e
n

e
rg

y

position x

U(x)
U = 0

E

U = -U0

E = K + U
E < U    K < 0 E < U    K < 0

E > U

 K > 0

classical forbidden
region

classical forbidden
region

classical
allowed

region

2

2
. .

d
curvature K E

dx


 

( )x

0 
positive
curvature

positive
curvature

negative
curvature

U(x)



5 

 

The process of finding physically acceptable values for E and the corresponding 

wavefunctions ( )x can be automated by counting the number of zero crossing of the 

wavefunction and adjusting the value of E until the condition max( ) 0x   is satisfied. 

For the lowest energy state (ground state) E1, the wavefunction is zero only at the 

extreme values for x and therefore, the number of crossing is zero. The 1
st
 excited state 

E2 will have only 1 crossing and the n
th

 excited state En+1 will have n crossings as shown 

in Figure 3. 

 

In the Finite Difference Method, we start with 

       1 , 2 , ,x x x x N        
     1 , 2 , ,k k k k N     

where N is the maximum number of x coordinates, x(1) = xmin and x(N) = xmax 

   min( ) (1) 0x x    and    (2) (1) 1x x x     

then as x is incremented, the other values of ( )x are calculated from the equation 

          
2

1 12 (c c c cx k x x x          for c = 2 to N-1 

 

When a physically accepted solution is found for the n
th

 state the wavefunction is 

normalized by numerically integrating the wavefunction using Simpson’s 1/3 rule 

  
2( )

(1)

( )
( ) ( )

x N

n n
x

n

x
x dx A x

A


   

 

 

The m-script se_fdm.m was used to find the total energies and its corresponding 

wavefunctions for a potential well of depth -400 eV and width 0.1 nm. The range for the 

x-coordinates was from -0.1 nm to + 0.1 nm. The value of E was manually adjusted to 

find the physically acceptable solutions as shown in Figure 3. For this potential well, 

there are four bound states. The total energy for the ground state, n = 1 is E 1 = -373.84 

eV. Thus, the binding energy of the electron or its ionization energy (energy need to 

free the electron from its bound state) is EB = +373.84 eV. 
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 Fig. 3. The four states for an electron confined by a potential well of 

depth -400 eV and width 0.10 nm with xmin = -0.10 nm,  xmax = +0.10 

nm.  [se_fdm.m]  

 

The smaller binding energy, the less accurate are the results because the range of x 

values is not large enough to accurately define the exponential convergence to zero of 

the wavefunctions as x approaches xmax. For the case n = 4 as shown in Figure 3, E4 = -

21 eV when xmax = 0.1 nm and one can see that the exponential tail is not very well 

defined. When xmax is increased to 0.2 nm, the exponential tail is better defined and the 

total energy is E4 = -24.85 eV.  Solutions of the Schrodinger Equation depend upon the 

width of the well and the range of x values. One has to make a judgment based upon the 

variation of (x) as x approaches xmax in determining the most suitable range for the x 

values. Figure 4 shows the ground state, for the potential well of depth -400 eV and 

width 0.10 nm when xmax is increased from 0.10 nm to 0.20 nm. It is now more difficult 

to find the total energy for this state since slight variations in E result in exponential 

diverging tails. 

ground state n = 1, E1 = -373.84 eV 1st excited state n = 2, E2 = -296.63 eV

2nd excited state n = 3, E3 = -173.5 eV 3nd excited state n = 4, E4 = -21 eV
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  Fig. 4. The potential well has a depth -400 eV and width 0.01 nm. The 

x values range from -0.2 nm to + 0.2 nm. The wavefunction (x) is 

more sensitive to the total energy E as the range of x values is 

increased. [se_fd.m]. 

 

 

Running the se_fdm.m script   

In the Command Window type se_fdm to run the program. The following text is  

displayed 

 

Enter a value of E so that psi(end) = 0   default value = -295 
To end the App enter a positive number eg 9 
 
E =  
 

Inputting a positive number will terminate the program. On entering a negative number 

the following is displayed 

 

E  =  -295 
No. of crossing for psi = 2  
End value of psi  =  2.29e+05 
 

 
 

Continuing entering  a value for E until psi(end)  0. This will then give you a 

physically acceptable solution of the Schrodinger Equation. 

 

E = - 373.797300 eV E = - 373.797386 eV E = - 373.797396 eV


