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INTRODUCTION 

In this paper, the basics of [2D] linear planar dynamical systems is 

discussed using the example of a mass – spring system. One can solve 

the ODE for the system numerically and compare it with a linear 

algebra approach where the solution is expressed in terms of 

eigenvalues and eigenvectors of the matrices defining the system. 

From my point of view the numerical solution is a much better 

approach than the more traditional linear algebra method. 

 

A mass-spring system is a fundamental mechanical oscillator 

consisting of a mass attached to a spring.  

 

 

1 1 2 1 2displacement velocity accelerationx x v x x a x x=  =  =  

 

It demonstrates the principle that the restoring force from the spring is 

proportional to the displacement, a concept described by Hooke's Law 

if F mx k x= = − . 

 

These systems are crucial for understanding oscillating motion and 

have wide-ranging real-world applications, from vehicle suspension 

systems to simulating complex motions in computer graphics.   
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If there is no damping then the system will exhibit simple harmonic 

motion when displaced from its equilibrium position. The period T of 

the oscillation is 

 2 2
2

k k m
T

m m k


  


= = = =  

 

In our model, we can introduce a damping term where the damping 

force is proportional to the velocity of the mass. The constant of 

proportionality is called the damping constant q. If the motion is 

damped, the oscillations will decay to zero. The ODE for the damped 

mass – spring is 

  F mx k x q x= = − −    

 

The second order ODE for the damped mass – spring system is 

 
k q

x x x
m m

= − −  

This needs to be expressed as two first order ODE 

 
1 2

2 1 2

x x

k q
x x x

m m

=

= − −
 

 

where 1x  is the displacement x, and 2x is the velocity v. 

 

The system equations are solved in Python using the function odeint. 
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Let 1 /K k m= − and 2 /K q m= −  then the ODEs become 

 
1 2

2 1 1 2 2

x x

x K x K x

=

= +
 

In a linear algebraic approach, the system equations are expressed in 

matrix form  
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and the solution is 
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where L1 and L2 are the eigenvalues of the matrix A and F is the 

eigenvector matrix 

 
00 1000 01

1 2

10 11 10 11

f ff f

f f f f

    
= = =    
    

F F F  

 

The eigenvalues and eigenvector matrix are found using the Python 

function eig(A). The c coefficients c found by solving the equations 

for x(t) and y(t) using the Python function solve. 
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Python Code from ds1401.py to find eigenvalues and analytical 

solutions: 

A = array([[0,1],[K,0]]) 

L, F = eig(A) 

F0 = [[F[0,0],F[1,0]]] 

F1 = [[F[0,1],F[1,1]]] 

X = np.transpose(u0) 

c = np.linalg.solve(F,X) 

xA = c[0]*exp(L[0]*t)*F[0,0] + c[1]*exp(L[1]*t)*F[0,1] 

vA = c[0]*exp(L[0]*t)*F[1,0] + c[1]*exp(L[1]*t)*F[1,1] 

 

SIMULATIONS 

The solutions using the numerical method by solving the ODEs and 

the linear algebra method produce identical results. 

 

SIMPLE HARMONIC MOTION (No damping) 
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0 0a b j a b = + =   motion is purely oscillatory without any 

decay in the motion towards the fixed point at the Origin in the phase 

portrait (x vs v). 

 

Fig. 1.1.  Displacement: Simple harmonic motion with period T = 1.0. 

 

Fig. 1.2.   Velocity. 

 

Fig. 1.3. Phase plane: the Origin (0, 0) is the fixed point (centre).   
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The Origin is the centre of the orbit in phase space. The trajectory is a 

closed orbit (limit cycle). 

 

Fig. 1.4.   Phase plane: streamline plot (vector field) and trajectory. 

The trajectory in the phase plan is an ellipse. The flow is clockwise. 

Using this plot you can to predict the orbit for any initial condition. 

 

 

Fig. 1.5.  Phase plane: quiver plot. The streamplot gives a much better 

view of the vector field. 
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DAMPED HARMONIC MOTION  
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0 0a b j a b = +    motion is oscillatory where the orbit is 

drawn to the fixed point at the Origin with the amplitude of the 

oscillation decaying exponentially to zero.  

 

 

Fig. 2.1.  Displacement: Simple harmonic motion with period T = 1.0. 
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Fig. 2.2.   Velocity. 

 

Fig. 2.3. Phase plane: the Origin (0, 0) is the fixed point (centre).   

The Origin is the centre of the orbit in phase space. The displacement 

and the velocity both decay to zero. 
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Fig. 2.4.   Phase plane: streamline plot (vector field) and trajectory. 

The trajectory in the phase plan is an ellipse. The flow is clockwise. 

Using this plot you can to predict the orbit for any initial condition. 

 

 

Fig. 2.5.  Phase plane: quiver plot. The streamplot gives a much better 

view of the vector field. 

 

 

 


