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DOING PHYSICS WITH PYTHON 

DYNAMICAL SYSTEMS 

[2D] LINEAR DYNAMICAL SYSTEMS 

Theoretical considerations 

 

Ian Cooper 

Please email me any corrections, comments, suggestions or 

additions:   matlabvisualphysics@gmail.com 

 

 

DOWNLOAD DIRECTORIES FOR PYTHON CODE 

 Google drive 

 

 GitHub 

 

cs200.py     ds1421.py   ds1422.py   ds1423.py 

 

The Python Codes solve a pair of linear ODEs in x and y. The 

solution gives the time evolution of the two variables and the 

phase portrait (quiver plot and streamplot) using nullclines, 

vector fields, and eigenvectors.  One can find and classify 

critical points in the phase plane. 

 
The letters used for physical quantities are different from those used in 

Jason’s video. Greek letters are avoided and letters used in this paper are 

closely related to the letters used in the Python Code. 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/python
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INTRODUCTION 
 
This article considers how Python can be used to solve [2D] 

linear dynamical systems. The [2D] systems are described by a 

pair of ordinary differential equations (ODEs) in x and y. The 

ODEs are solved numerically using the Python function odeint. 

The solutions for x and y are displayed graphically as time 

evolution plots and phase portrait plots.  For a linear system, the 

ODEs can be expressed as 
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The phase portrait is a [2D] figure showing how the qualitative 

behaviour of system is determined as x and y vary with t. With 

the appropriate number of trajectories plotted, it should be 

possible to determine where any trajectory will end up from any 

given initial condition. 

 

The vector field gives the gradients dy and 

dx. The slope of the trajectories at each point in the vector field 

is given by  

 
dy y

dx x
=  

The contour lines for which dy/dx is a constant are called 

isoclines. The contour lines for which dx/dt = 0 and dy/dt = 0 are 

called nullclines. 
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Isoclines may be used to help with the construction of the phase 

portrait. For example, the nullclines for which x  = 0 and y  = 0 

are used to determine where the trajectories have vertical and 

horizontal tangent lines, respectively. If x  = 0, then there is no 

motion horizontally, and trajectories are either stationary or 

move vertically. When y  = 0, then there is no motion vertically, 

and trajectories are either stationary or move horizontally. 

 

Systems in which det( ) 0A  is simple, and the Origin is then 

the only critical point.  

 

A linear system is non-simple if the matrix A is singular, i.e., 

det(A) = 0, and at least one of the eigenvalues is zero then this 

system has critical points other than the Origin (multiple fixed 

points].  

 

An equilibrium occurs at critical points of a dynamical system 

generated by system of ordinary differential equations (ODEs) 

where a solution that does not change with time. Let (xe, ye) be 

the fixed point (equilibrium, critical or steady-state point). To 

find the fixed point, you only need to solve the pair of equations 

governing the system. 

 

00 01 10 11( ) 0 ( ) 0 0 0e e e e e ex x y y a x a y a x a y= =  + = + =  
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Nullclines are curves or lines within a phase plane of a system 

of differential equations, defined by the condition that one of the 

rates of change is zero. For a system of two equations, the "x-

nullcline" is where dx/dt = 0, causing vectors to move purely 

vertically, while the "y-nullcline" is where dy/dt = 0, causing 

vectors to move purely horizontally. By finding these nullclines, 

one can sketch a phase portrait to understand how the system's 

solutions behave over time, with intersections of nullclines 

representing fixed points.   

• Along an x-nullcline: dx/dt = 0, so the solution's state 

changes only in the y-direction (up or down).  

• Along a y-nullcline: dy/dt = 0, so the solution's state 

changes only in the x-direction (left or right).  

• In each region, the signs of dx/dt and dy/dt indicate the 

overall direction of flow. 

• The intersections of the nullclines are the equilibrium 

points, where both dx/dt and dy/dt are simultaneously zero.  

 

Nullclines provide a qualitative understanding of the system's 

dynamics without needing to find exact analytical solutions, 

which can be difficult for nonlinear systems. They help predict 

the overall behaviour of solutions, such as whether they will 

approach equilibrium points, oscillate, or move in specific 

directions and the location of fixed points. 
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The [2D] planar system of linear ODEs are  

  00 01 10 11x a x a y y a x a y= + = +  
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and analytical solutions are given by 
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where L0 and L1 are the eigenvalues ( )L   of the matrix A 

and F is the eigenvector matrix 
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The eigenvalues and eigenvector matrix are found using the 

Python function eig(A). The c coefficients are found by solving 

the pair of equation using the Python function solve. 

 

The x,y solution depends upon the exponential values of the 

eigenfunctions which may be complex with real and imaginary 

components. So, we only have to consider the exponential 

function of the form. 

 

Let an eigenvalue be expressed at L a b j= +  and the 

exponential terms as 
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( ) ( ) ( ) ( )

( ) ( )( )
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Re exp exp cos( )

Lt a b j t a t bt j

L t a t bt bt j

L t a t bt

= + =

= +

=  

 

 

You can now see clearly, the real and imaginary parts of the 

eigenvalues determine the behaviour of the flow. There is the 

exponential growth or exponential decay term ( )exp at  and the 

oscillatory term cos( )bt . For the flow, the Origin (0, 0) is 

always a fixed point of the system. 

• Complex eigenvalue 0 0b a =   oscillatory flow (SHM 

motion) which leads to closed elliptical orbits in the phase 

portrait plot. 

• Complex eigenvalue 0 0b a    oscillatory flow with 

increasing amplitude. 

• Complex eigenvalue 0 0b a    oscillatory flow with 

increasing amplitude. 

• Real eigenvalue b = 0, a > 0   flow is away from the 

fixed point at the Origin (0, 0). 

• Real eigenvalue b = 0, a < 0   flow is towards the fixed 

point at the Origin (0, 0). 

 

 

The stability of typical equilibria of smooth ODEs is determined 

by the sign of real part of the eigenvalues of the Jacobian matrix 

J.  In [2D] systems the Jacobian matrix J is 
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and for the planar linear system 
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These eigenvalues are often referred to as the eigenvalues of the 

equilibrium which are either both real or a complex-conjugate.  

The eigenvalues and eigenfunctions can be found using the 

Python function eig.    ( )L   

 

Eigenvalues 

1 2,   

Stability of critical point 

(equilibrium or fixed points) 

distinct, real, and positive 

1 2 1 20 0       

Unstable node 

Both eigenvalues zero 

1 2 0 = =  

Unstable 

distinct, real, and negative 

1 2 1 20 0       

Stable node 

One eigenvalue is positive 

and the other negative 

1 20 0    

Saddle point 

Repeated eigenvalues

1 2 0 =   

Unstable 

If there are two linearly independent 

eigenvectors, then the critical point is 

called a singular node. If there is one 

linearly independent eigenvector, then 

the critical point is called a degenerate 

node. 
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Repeated eigenvalues

1 2 0 =   

Stable 

Complex eigenvalues 

0a b j b = +   

a > 0 Unstable oscillator:  amplitude 

grows with time 

a = 0 Stable: undamped oscillator 

a < 0 Stable: damped oscillator  

 

 

The eigenvectors give the manifolds of the system and the 

manifolds maybe stable or unstable. For the eigenvector (xJ, yJ), 

the manifold is given by the line from the Origin (0, 0) through 

the point (xJ, yJ).  

 

The manifolds can also be determined from the analytical 

solutions of the ODEs 
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c0 = 0 manifold is the straight line from the Origin through the 

point (xc0, yc0) evaluated at some large time t. 

 1 1

0 1 10 0 1 11
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c cx c f e y c f e= =  
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c1 = 0 manifold is the straight line from the Origin through the 

point (xc1, yc1) evaluated at some large time t. 

 1 1

1 0 10 0 0 11

L t L t

c cx c f e y c f e= =  

 

We can consider the two straight lines when c0 = 0 and c1 = 0 

and the two eigenvalues are real and of opposite signs, L0 > 0 

and L1 < 0. 

 

c1 = 0 and L0 > 0 

 0 0

0 00 0 10( ) ( )
L t L t

x t c f e y t c f e= =   

 x(t) and y(t) increase exponentially with time t 

 ( ), ( ) ( , )t x t y t→ →    

 The flow is directed along this line away from the 

saddle point (0, 0) 

 Unstable – everything is expanding 

 

c0 = 0 and L1 < 0 

 1 1

1 10 1 11( ) ( )
L t L t

x t c f e y t c f e= =  

 x(t) and y(t) decrease exponentially with time t 

 ( ), ( ) (0,0)t x t y t→ →  

 The flow is directed along this line towards the saddle 

point (0, 0) 

 Stable – everything is pulled into the saddle point. 

 

 


