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Greek letters are avoided and letters used in this paper are closely related to
the letters used in the Python Code.

This paper considers [2D] linear dynamical systems which have
multiple fixed points. The Jacobian matrix J has real eigenvalues one

of which 1s zero.
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SIMULATIONS

Example 1 Unstable multiple critical points 4, >0 4, =0
System: x=x y=0

Dynamics:

f=xdf/dx=1df /dy=0
g=0 dg/dx=0dg/dy=0

J—10 -1 4, =0
o o0 A=l 4=

A=l 0] deray=o
“lo o) T

Initial conditions (x0, y0)
(1.00, 1.00) (-1.00,-1.00) (-2.00,-2.00) (-1.50,-1.50)
(0.00, 0.00) (2.00, 2.00)
A matrix: a1l1=1.0 al2=0.0 al1=0.0 al2=0.0
Determinant A = 0.00

Eigenvalues Jacobian J =1.00 0.00

This linear system is non-simple since the matrix A is singular,
det(A) = 0, and at one of the eigenvalues is zero. Therefore, this

system has critical points other than the Origin (multiple fixed points).



Xdot Ydot

0.10
4 4
5 5 0.05
0 > 0 0.00
-2 21 -0.05
-4 -4
. -0.10
0 4 2 0 2 4
X X

Fig. 1.1. [2D] view of the system equations. The flow is horizontal

away from the x = 0.

x(0)<0 y(0)20=t—>xo x—> -0 y=y(0)
x(0)>0y(0)20=>t—>n x>+ y=y(0)
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Fig. 1.2. Time evolution of the x and y trajectories.
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Fig. 1.3.
critical points lying along the y-axis. Six trajectories (orbits) in phase
space for a time interval A¢z = 0.40. The black dot is the equilibrium
point of the system at the Origin (0,0), and the green dots are for the
different initial conditions (x(0), ¥(0)). The length of the trajectory is
shorter when the initial conditions are nearer the equilibrium point at
the Origin. Solutions of the ODEs are x(¢) and y(?).

y(0)#0 t—>o0 x(t)—>to y(t)=y(0) where x(¢) changes

Vector field: quiver plot. There are an infinite number of

exponentially.

Fig. 1.5. Vector field: streamplot. There are an infinite number

of critical points lying along the y-axis.



The determinant is zero det(A) =0 and the eigenvalues are Ao = 1 and

A1 = 0. One eigenvalue is real and positive and the other is zero.

Therefore, the equilibrium points on the y-axis are unstable.
The critical points are found by solving the equations
x=0 y=0
which has the solution x = 0, y = constant. Thus, there are an infinite

number of critical points lying along the y-axis. The direction field

has gradient given by

d—yzl.zO x#0
dx x

This implies that the direction field is horizontal for points not

on the y-axis. The direction vectors may be determined from the
equation x = x since if x > 0, then x > 0, and the trajectories move in
+x direction and if x <0, then x <0, and trajectories move in the -x

direction.



Example 2 Points along the y-axis are stable nodes
<0 4,=0

System: x=-x y=0
Dynamics:

f=xdf/ldx=-1 df /dy=0
g=0 dg/dx=04dg/dy=0

3= "0 A= 4 -0
Lo o) " T

a=[ 0 deay=o
_0 0 e( )=

Initial conditions (x0, y0)
(1.00, 1.00) (-1.00,-1.00) (-2.00,-2.00) (-1.50,-1.50)
(0.00, 0.00) (2.00, 2.00)
A matrix: al1=-1.0 a12=0.0 al1=0.0 al2=0.0
Determinant A = 0.00

Eigenvalues Jacobian J =-1.00 0.00
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Fig. 2.1. [2D] view of the system equations.
x(0)<0=>t—>o x>0 y=y(0)
x(0)>0=>t—>o x>0 y=y(0)
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Fig. 2.2. Time evolution of the x and y parameters.
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Fig. 2.4. Vector field: quiver plot. There are an infinite number of

critical points lying along the y-axis.

Six trajectories (orbits) in phase space for a time interval As =0.40.

The black dot is the equilibrium point at the Origin (0,0), and the

oreen dots are for the different initial conditions (x(0), 1(0)).

Solutions of the ODEs are x(¢) and y(¢). For all initial conditions:

t—>o x(t)—>0 y()=y(0).

Fig. 2.5. Vector field: streamplot.



The determinant is zero det(A) =0 and the eigenvalues are A; = -1
and A, = 0. One eigenvalue is real and negative and the other is zero.
Therefore, there is an infinite number of equilibrium points along the

y-axis (x = 0). All trajectories, head towards x = 0 with constant y.



