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INTRODUCTION 

In a planar linear dynamical system, complex eigenvalues of the 

system's real matrix indicate oscillatory behaviour, with the real part 

of the eigenvalue determining the rate of growth or decay and the 

imaginary part dictating the frequency of oscillation. The eigenvalues 

will appear as complex conjugate pairs, and their corresponding 

eigenvectors will also be complex. Solutions will exhibit stable or 

unstable spirals around the Origin or the Origin acts a centre for the 

trajectories.  

 

The real part of the eigenvalue a, determines the stability and nature 

of the critical point at the Origin.  
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• a > 1    system grows unboundedly as the ttrajectories spiral 

outwards.    Unstable focus 

•  a < 1   system decays as the trajectories spiral inwards, 

converging to the Origin.     Stable focus 

• a = 1    solutions maintain a constant magnitude.  

• a = 0    trajectories are closed curves (circles or ellipses) and do 

not spiral into or out of the origin 



3 
 

b   gives the angular frequency of the oscillation and means the 

system is spiralling rather than monotonically decaying to or growing 

from the Origin.  

 

The phase portrait visually represents the system's behaviour, 

showing the trajectories of solutions in the x-y plane. With complex 

eigenvalues, the phase portrait shows solutions that move in spirals or 

ellipses around the Origin. The direction of the spiral (clockwise or 

counterclockwise) is determined by the sign of the imaginary part of 

the eigenvalue. 

 

SIMULATIONS 

a b j = +  

 

Example 1    STABLE FOCUS    a < 1        

 1.0 1.0 1.0 1.0x x y y x y= − − = −  

A matrix: a11 = -1.0  a12 = -1.0  a11 = 1.0   a12 = -1.0 

Determinant A = 2.00 

Initial conditions (x0, y0) 

  (1.00, 4.50)    (-2.90, 1.31)    (-3.00, -4.00)    (1.00, -2.00) 

  (3.00, -1.50)    (1.50, -0.50)    (0.10, 0.10) 

Eigenvalues     (-1+1j)     (-1-1j) 

Eigenfunctions  [-0.+1.j  0.-1.j]     [1.-0.j 1.+0.j] 
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Fig. 1.1.  [2D] view of the system equations. 

 

Fig. 1.2. Time evolution of the x and y trajectories. All trajectories are 

attracted to the stable fixed point at the Origin (0, 0). 
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Fig. 1.3.  Vector field spiral: quiver plot 

Red: x-nullcline ( )0x =    Blue: y-nullcline ( )0y =  

green: initial conditions (x0, y0) and trajectories  

 

 

 

Fig. 1.4. Vector field spiral: streamplot.  

 

All trajectories are attracted to the stable fixed point at the Origin (0, 

0). 
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The eigenvalues and eigenvectors are complex solutions. The Origin 

is the only critical point and is a stable focus. The eigenvectors are 

complex and there are no real manifolds. If the real part of the 

eigenvalue is negative the trajectories will spiral into the Origin and 

in this case the equilibrium solution will be asymptotically stable.. 

 

 

Example 2   UNSTABLE FOCUS    a > 1        

 0.03 0.09 0.04 0.03x x y y x y= + = − −  

A matrix: a11 = 0.03  a12 = 0.09  a11 = -0.04   a12 = 0.03 

Determinant A = 0.00450 

Initial conditions (x0, y0) 

  (-0.0500, 0.0500) 

  (0.0500, -0.0500) 

  (0.0000, 0.0000) 

  (0.0000, 0.0000) 

  (0.0000, 0.0000) 

Eigenvalues     (0.03+0.06j)     (0.03-0.06j) 

Eigenfunctions  [0.-1.5j 0.+1.5j]     [1.+0.j 1.-0.j] 
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Fig. 2.1.  [2D] view of the system equations. 

 

Fig. 2.2. Time evolution of the x and y parameters. 

               ( ) ( )t x t y t→ → →  

 

Initially the flow oscillates before diverging to infinity. 
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Fig. 2.3.   Vector field spiral: quiver plot.  

 

Fig. 2.4. Vector field spiral: streamplot.  

 

If the real part of the eigenvalue is positive (a > 0) the trajectories 

will spiral away from the Origin and in this case the equilibrium 

solution will be asymptotically unstable.  The fixed point at the Origin 

is an unstable focus.             

( ) ( )t x t y t→ → →  
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Example 3    UNSTABLE FOCUS    a = 0        

System:   3 9 4 3x x y y x y= + = − −  

A matrix: a11 = 3.00  a12 = 9.00  a11 = -4.00   a12 = -3.00 

Determinant A = 27.00000 

Initial conditions (x0, y0) 

  (1.0000, 1.0000) 

  (-2.0000, -2.0000) 

Eigenvalues     (0+5.196j)     (0 -5.196j) 

Eigenfunctions  [-0.75-1.299j -0.75+1.299j]     [1.+0.j 1.-0.j] 

 

When the eigenvalues of a matrix of J A  are purely complex, as 

they are in this case, the trajectories of the solutions will be ellipses 

that are centred at the Origin. The only thing that we really need to 

concern ourselves with here are whether they are rotating in a 

clockwise or counterclockwise direction. 

 

Fig. 3.1.  [2D] view of the system equations. 
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Fig. 3.2. Time evolution of the x and y parameters. 

               ( ) ( )t x t y t→ → →  

 

From the plots, the period T of oscillation is 1.2. From the 

eigenvalues, the complex part b gives the frequency and hence the 

period.    
2

5.196 1.2b T




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Fig. 3.3.   Vector field: quiver plot. The red line is the x-nullcline 

( )0x = , and the blue line is the y-nullcline ( )0y = . The direction of 

flow is clockwise. The flow is clockwise. 

 

 

Fig. 3.4. Vector field: streamplot. The red line is the x-nullcline 

( )0x = , and the blue line is the y-nullcline ( )0y = . 
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The Origin is the only critical point. In the phase portraits, the flow is 

horizontal on the line where 0y =  and vertical on the line where 

0x = .   The equilibrium solution in the case is called a centre and is 

stable.       

 

The equilibrium solution is stable and not asymptotically stable. 

Asymptotically stable refers to the fact that the trajectories are 

moving in toward the equilibrium solution as t increases. The 

trajectories in this example are simply revolving around the 

equilibrium solution and not moving in towards it. The trajectories 

are also not moving away from the equilibrium solution and so they 

aren’t unstable. Therefore, we call the equilibrium solution neutral 

stable. 
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