
1

DOING PHYSICS WITH PYTHON

[2D] NON-LINEAR DYNAMICAL SYSTEMS

THEORETICAL CONSIDERATIONS

Ian Cooper
matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORIES FOR PYTHON CODE

Google drive

GitHub

Jason Bramburger

Hyperbolic Fixed Points - Dynamical Systems | Lecture 16

https://www.youtube.com/watch?v=P5zQ1uUysGA&t=942s

Stephen Lynch

Dynamical Systems with Applications using Python

This paper considers the theory behind [2D] non-linear dynamical

systems. The Python Code solves a pair of non-linear ODEs in x and

y. The solution gives the time evolution of the two variables x and y,

the phase portrait (quiver plot and streamplot), the nullclines, vector

fields, eigenvectors, and find and classify critical points in the phase

plane.

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://www.youtube.com/watch?v=P5zQ1uUysGA&t=942s

2

INTRODUCTION

This article considers how Python can be used to solve [2D] non-

linear dynamical systems. The [2D] systems are described by a pair of

ordinary differential equations (ODEs) in x and y. The ODEs are

solved numerically using the Python function odeint. The solutions

for x and y are displayed graphically as time evolution plots and phase

portrait plots. For a dynamical system in [2D] dimensions the ODEs

can be expressed as

(,) (,)x f x y y g x y= =

The phase portrait is a [2D] figure showing how the qualitative

behaviour of system is determined as x and y vary with t. With the

appropriate number of trajectories plotted, it should be possible to

determine where any trajectory will end up from any given initial

condition.

The direction field or vector field gives the gradients dy

dx. The slope of the trajectories at each point in the vector field is

given by

dy y

dx x
=

The contour lines for which dy/dx is a constant are called isoclines.

3

The contour lines for which dy/dt = 0 and d/xdt = 0 are called

nullclines. Isoclines may be used to help with the construction of the

phase portrait. For example, the nullclines for which x = 0 and y = 0

are used to determine where the trajectories have vertical and

horizontal tangent lines, respectively. If x = 0, then there is no motion

horizontally, and trajectories are either stationary or move vertically.

When y = 0, then there is no motion vertically, and trajectories are

either stationary or move horizontally.

An equilibrium occurs at critical points or fixed points (,)e ex y of a

dynamical system generated by system of ordinary differential

equations (ODEs) where a solution that does not change with time.

 (,) 0 (,) 0e e e ex f x y y g x y= = = =

FIX POINT STABILITY

The stability of typical equilibria for smooth ODEs is determined by

the sign of real part of the eigenvalues of the Jacobian matrix. These

eigenvalues are often referred to as the eigenvalues of the equilibrium.

In [2D] systems the Jacobian matrix is

,

/ /
(,)

/ /
e e

e e

x x y y

f x f y
x y

g x g y
= =

    
=  

    
J

and has two eigenvalues, which are either both real or complex-

conjugates. The eigenvalues and eigenfunctions can be found using

4

the Python function eig. A critical point is called hyperbolic if the real

part of the eigenvalues of the Jacobian matrix (,)e ex yJ is nonzero. If

the real part of either of the eigenvalues of the Jacobian is equal to

zero, then the critical point is called non-hyperbolic. The Jacobian

matrix is derived using a Taylor’s expansion near a fixed point where

2nd order and above are ignored. We say that the eigenvalues of a

system are linearized around a fixed point

A hyperbolic fixed point is a type of equilibrium point in a

dynamical system where the system's behaviour is strongly expanding

and contracting in different directions, with no centre directions

where it neither expands nor contracts significantly. This

characteristic is determined by the eigenvalues of the system's

Jacobian matrix where the real parts of all eigenvalues must be non-

zero (Re(λ) ≠ 0). Hyperbolic fixed points are considered robust,

meaning they are stable under small perturbations of the system.

Near a hyperbolic fixed point, the phase plane of the nonlinear system

is topologically equivalent to the phase plane of its linearization. The

Hartman-Grobman theorem guarantees that the behaviour near a

hyperbolic fixed point in a non-linear system resembles the behaviour

of its linearized counterpart, making it easier to study.

For a hyperbolic fixed point is robust as a small change to the system

will likely result in a new, hyperbolic fixed point close to the original

one. However, for a non-hyperbolic fixed point, which has an

5

eigenvalue with its real part of zero, it lacks this robustness and can

disappear or change behaviour with small perturbations. The

robustness of hyperbolic fixed points makes them reliable indicators

of the local behaviour of a system, simplifying the analysis of

complex non-linear systems.

Hyperbolic fixed points are important since they define directions

where the system strongly expands or contracts, and these directions

are crucial for understanding the overall dynamics. :

The eigenvalues of a system linearized around a fixed point can

determine the stability behaviour of a system around the fixed point.

The particular stability behaviour depends upon the existence of real

and imaginary components of the eigenvalues, along with the signs of

the real components and the distinctness of their values. That is, the

eigenvalues give us the local stability around the fixed point.

To analyse the stability of a fixed point in a [2D] dynamical system,

you must first find the fixed point and then linearize the system by

calculating the Jacobian matrix at that fixed point.

After finding this stability, you can show whether the system will be

stable, unstable and undamped fluctuations, or unstable system in

which the amplitude of the fluctuation is always increasing (such

system will not be able to return to steady state). For the undamped

6

situation, the constant fluctuation will be hard on the system and can

lead to equipment failure or with the ever-increasing amplitude of the

fluctuations catastrophic failure will be the result.

The eigenvalues of the Jacobian matrix may be real or complex and

this determines the local nature of a fixed point. in the local region.

 Real eigenvalues 0 1 

 Complex eigenvalues 0 1 0a b j a b j b = − = + 

 where a and b are real scalars

Real eigenvalues 0 1 

For real eigenvalues, in the locality of a fixed point the flow is either

towards (stable) or away (unstable) from the fixed point. There is no

oscillatory motion.

• Both eigenvalues are distinct and negative:

0 1 0 10 0     

Fixed point is stable - small perturbations will decay, and the system

will return to the fixed point. A solutions starting near a stable fixed

point will approach it over time (source node with vector field

pointing inward).

7

• Both eigenvalues are distinct and positive:

0 1 0 10 0     

Fixed point is unstable, and small perturbations will grow, causing

the system to move away from the fixed point. A solution starting

near an unstable fixed point will move away from it (source node with

vector field pointing outward).

One eigenvalue negative and one positive: 0 1 0 10 0     

Unstable saddle node: a point where a series of minimum and

maximum points converge at one area in the vector field, without

hitting the point. [3D] surface plot the function looks like a saddle.

• Repeated positive eigenvalues 0 1 0 = 

ONE linearly independent eigenvector. Unstable fixed point is a

degenerate node.

• Repeated positive eigenvalues 0 1 0 = 

TWO linearly independent eigenvector. Unstable fixed point is a

singular degenerate node (source).

• Repeated negative eigenvalues 0 1 0 = 

Fixed point is a stable sink.

8

Complex eigenvalues

 0 1 0a b j a b j b = − = + 

 where a (real part) and b (imaginary part) are real scalars

The system will be oscillatory and the stability of oscillating systems

is determined entirely by examination of the real part.

• Positive real part a > 0 Focus: unstable oscillator with a

spiral whose amplitude increases with time. This can be

visualized as a vector tracing a spiral away from the fixed point

in the phase portrait. The plot of response with time of this

situation would look sinusoidal with ever-increasing amplitude.

This situation is usually undesirable as any external disturbance

will result in the system itself not returning to the steady-state.

• Negative real part a < 0 Focus: stable oscillator with a spiral

whose amplitude decreases with time. This can be visualized as

a vector tracing a spiral toward the fixed point in the phase

portrait. The plot of response with time of this situation would

look sinusoidal with ever-decreasing amplitude. This system is

stable since steady state will be reached even after a disturbance

to the system. The oscillation will bring the system back to the

fixed point. It is important to know that having all negative real

parts of eigenvalues is a necessary and sufficient condition of a

stable system.

9

• Zero real part a = 0 (eigenvalue purely imaginary) Centre:

stable undamped oscillator. This can be visualized in two

dimensions as a vector tracing an ellipse around a point (centre)

in the phase portrait. The plot of response with time would look

sinusoidal.

Python Code for [2D] non-linear dynamical systems

• Define the system and system dimensions

• Solve the system equations to find the fixed points.

• Solve the system equations to find the x and y nullclines.

• Calculate the Jacobian matrix and find its eigenvalues and

eigenvectors. Determine the stability of the fixed points.

• Plot the vector field in the phase portrait (x vs y plot) using a

streamplot or quiver plot. Add to the plot the fixed points and

the nullclines.

• Specify the initial condition, x(0) and y(0). Solve the ODEs to

give the trajectory using the Python function odeint. Plot the

time evolution of the solutions, t vs x(t) and t vs y(t). The

trajectory can also be added to the phase portrait.

