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This paper considers the theory behind [2D] non-linear dynamical 

systems. The Python Code solves a pair of non-linear ODEs in x and 

y. The solution gives the time evolution of the two variables x and y, 

the phase portrait (quiver plot and streamplot), the nullclines, vector 

fields, eigenvectors, and find and classify critical points in the phase 

plane. 
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INTRODUCTION 

This article considers how Python can be used to solve [2D] non-

linear dynamical systems. The [2D] systems are described by a pair of 

ordinary differential equations (ODEs) in x and y. The ODEs are 

solved numerically using the Python function odeint. The solutions 

for x and y are displayed graphically as time evolution plots and phase 

portrait plots.  For a dynamical system in [2D] dimensions the ODEs 

can be expressed as 

( , ) ( , )x f x y y g x y= =  

 

The phase portrait is a [2D] figure showing how the qualitative 

behaviour of system is determined as x and y vary with t. With the 

appropriate number of trajectories plotted, it should be possible to 

determine where any trajectory will end up from any given initial 

condition. 

 

The direction field or vector field gives the gradients dy 

dx. The slope of the trajectories at each point in the vector field is 

given by  

 
dy y

dx x
=  

 

The contour lines for which dy/dx is a constant are called isoclines.  
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The contour lines for which dy/dt = 0 and d/xdt = 0 are called 

nullclines. Isoclines may be used to help with the construction of the 

phase portrait. For example, the nullclines for which x  = 0 and y  = 0 

are used to determine where the trajectories have vertical and 

horizontal tangent lines, respectively. If x  = 0, then there is no motion 

horizontally, and trajectories are either stationary or move vertically. 

When y  = 0, then there is no motion vertically, and trajectories are 

either stationary or move horizontally. 

 

An equilibrium occurs at critical points or fixed points ( , )e ex y  of a 

dynamical system generated by system of ordinary differential 

equations (ODEs) where a solution that does not change with time. 

 ( , ) 0 ( , ) 0e e e ex f x y y g x y= = = =  

 

 

FIX POINT STABILITY 

The stability of typical equilibria for smooth ODEs is determined by 

the sign of real part of the eigenvalues of the Jacobian matrix. These 

eigenvalues are often referred to as the eigenvalues of the equilibrium.  

In [2D] systems the Jacobian matrix is 

 

,

/ /
( , )

/ /
e e

e e

x x y y

f x f y
x y

g x g y
= =

    
=  

    
J  

and has two eigenvalues, which are either both real or complex-

conjugates.  The eigenvalues and eigenfunctions can be found using 
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the Python function eig. A critical point is called hyperbolic if the real 

part of the eigenvalues of the Jacobian matrix ( , )e ex yJ  is nonzero. If 

the real part of either of the eigenvalues of the Jacobian is equal to 

zero, then the critical point is called non-hyperbolic. The Jacobian 

matrix is derived using a Taylor’s expansion near a fixed point where 

2nd order and above are ignored. We say that the eigenvalues of a 

system are linearized around a fixed point 

 

A hyperbolic fixed point is a type of equilibrium point in a 

dynamical system where the system's behaviour is strongly expanding 

and contracting in different directions, with no centre directions 

where it neither expands nor contracts significantly. This 

characteristic is determined by the eigenvalues of the system's 

Jacobian matrix where the real parts of all eigenvalues must be non-

zero (Re(λ) ≠ 0). Hyperbolic fixed points are considered robust, 

meaning they are stable under small perturbations of the system.  

Near a hyperbolic fixed point, the phase plane of the nonlinear system 

is topologically equivalent to the phase plane of its linearization. The 

Hartman-Grobman theorem guarantees that the behaviour near a 

hyperbolic fixed point in a non-linear system resembles the behaviour 

of its linearized counterpart, making it easier to study. 

 

For a hyperbolic fixed point is robust as a small change to the system 

will likely result in a new, hyperbolic fixed point close to the original 

one. However, for a non-hyperbolic fixed point, which has an 
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eigenvalue with its real part of zero, it lacks this robustness and can 

disappear or change behaviour with small perturbations. The 

robustness of hyperbolic fixed points makes them reliable indicators 

of the local behaviour of a system, simplifying the analysis of 

complex non-linear systems.   

 

Hyperbolic fixed points are important since they define directions 

where the system strongly expands or contracts, and these directions 

are crucial for understanding the overall dynamics. :  

 

The eigenvalues of a system linearized around a fixed point can 

determine the stability behaviour of a system around the fixed point. 

The particular stability behaviour depends upon the existence of real 

and imaginary components of the eigenvalues, along with the signs of 

the real components and the distinctness of their values. That is, the 

eigenvalues give us the local stability around the fixed point. 

 

To analyse the stability of a fixed point in a [2D] dynamical system, 

you must first find the fixed point and then linearize the system by 

calculating the Jacobian matrix at that fixed point.  

 

After finding this stability, you can show whether the system will be 

stable, unstable and undamped fluctuations, or unstable system in 

which the amplitude of the fluctuation is always increasing (such 

system will not be able to return to steady state). For the undamped 



6 
 

situation, the constant fluctuation will be hard on the system and can 

lead to equipment failure or with the ever-increasing amplitude of the 

fluctuations catastrophic failure will be the result. 

 

The eigenvalues of the Jacobian matrix may be real or complex and 

this determines the local nature of a fixed point. in the local region. 

      Real eigenvalues   0 1    

      Complex eigenvalues   0 1 0a b j a b j b = − = +   

                                                 where a and b are real scalars 

 

Real eigenvalues   0 1   

For real eigenvalues, in the locality of a fixed point the flow is either 

towards (stable) or away (unstable) from the fixed point. There is no 

oscillatory motion. 

 

• Both eigenvalues are distinct and negative: 

0 1 0 10 0       

Fixed point is stable - small perturbations will decay, and the system 

will return to the fixed point. A solutions starting near a stable fixed 

point will approach it over time (source node with vector field 

pointing inward).  
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• Both eigenvalues are distinct and positive: 

0 1 0 10 0       

Fixed point is unstable, and small perturbations will grow, causing 

the system to move away from the fixed point. A solution starting 

near an unstable fixed point will move away from it (source node with 

vector field pointing outward).  

 

One eigenvalue negative and one positive: 0 1 0 10 0       

Unstable saddle node: a point where a series of minimum and 

maximum points converge at one area in the vector field, without 

hitting the point. [3D] surface plot the function looks like a saddle. 

 

• Repeated positive eigenvalues  0 1 0 =   

ONE linearly independent eigenvector. Unstable fixed point is a 

degenerate node. 

 

• Repeated positive eigenvalues  0 1 0 =   

TWO linearly independent eigenvector. Unstable fixed point is a 

singular degenerate node (source). 

 

• Repeated negative eigenvalues  0 1 0 =   

Fixed point is a stable sink. 
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Complex eigenvalues 

      0 1 0a b j a b j b = − = +   

        where a (real part) and b (imaginary part) are real scalars 

 

The system will be oscillatory and the stability of oscillating systems 

is determined entirely by examination of the real part.  

•  Positive real part a > 0   Focus: unstable oscillator with a 

spiral whose amplitude increases with time. This can be 

visualized as a vector tracing a spiral away from the fixed point 

in the phase portrait. The plot of response with time of this 

situation would look sinusoidal with ever-increasing amplitude. 

This situation is usually undesirable as any external disturbance 

will result in the system itself not returning to the steady-state. 

 

• Negative real part a < 0     Focus: stable oscillator with a spiral 

whose amplitude decreases with time.  This can be visualized as 

a vector tracing a spiral toward the fixed point in the phase 

portrait. The plot of response with time of this situation would 

look sinusoidal with ever-decreasing amplitude. This system is 

stable since steady state will be reached even after a disturbance 

to the system. The oscillation will bring the system back to the 

fixed point. It is important to know that having all negative real 

parts of eigenvalues is a necessary and sufficient condition of a 

stable system. 
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• Zero real part a = 0 (eigenvalue purely imaginary)   Centre: 

stable undamped oscillator.  This can be visualized in two 

dimensions as a vector tracing an ellipse around a point (centre) 

in the phase portrait. The plot of response with time would look 

sinusoidal. 

 

Python Code for [2D] non-linear dynamical systems 

• Define the system and system dimensions 

• Solve the system equations to find the fixed points. 

• Solve the system equations to find the x and y nullclines. 

• Calculate the Jacobian matrix and find its eigenvalues and 

eigenvectors. Determine the stability of the fixed points. 

• Plot the vector field in the phase portrait (x vs y plot) using a 

streamplot or quiver plot. Add to the plot the fixed points and 

the nullclines. 

• Specify the initial condition, x(0) and y(0). Solve the ODEs to 

give the trajectory using the Python function odeint. Plot the 

time evolution of the solutions, t vs x(t) and t vs y(t).  The 

trajectory can also be added to the phase portrait. 


