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INTRODUCTION 

 

A saddle-node bifurcation in a dynamical system is a local bifurcation 

where two equilibrium points (fixed points) collide and then 

annihilate each other, or are created from nothing. This phenomenon 

is also known as a fold bifurcation, tangential bifurcation, or blue 

skies bifurcation (refers to the sudden creation of two fixed points 

from nothing). Two fixed points emerge or are destroyed when 

nullclines become tangent. 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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Collision and Annihilation: Two fixed points, one stable and one 

unstable, merge into a single semi-stable fixed point at the bifurcation 

point.  

Creation of Fixed Points: As the bifurcation parameter changes, two 

new fixed points can appear at the bifurcation point.  

 

SIMULATIONS 

Consider the [2D] nonlinear dynamical system governed by the 

equations 

 2 2
( ) ( )x r x y y f x r x g y y= − = − = − = −  

where r is the bifurcation parameter. The fixed points of the system 

are dependent upon the bifurcation parameter r.  

 

We need to consider the three cases when r < 0, r = 0 and r > 0 

individually to explore the system dynamics for the x subsystem given 

the fact that in the y subsystem, the y-direction the motion is 

exponentially damped ( )0t y→ → . Figure 1 shows the phase 

portrait plots for r = 9 > 0, r = 0 and r = -9 < 0. For r > 0, there are 

two fixed points ( ),0r  which is a node (stable) and ( ),0r−  which 

is a saddle (unstable). As r decreases, the saddle and stable node 

move closer and coalesce at r = 0 to give a semi-stable fixed point. 

When  r < 0, the peak of the parabola falls below zero and all fixed 

points are annihilated.  
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Fig. 1.  As r decreases ( r > 0 )  the stable and unstable fixed points 

move closer together and finally merge and annihilate each other at 

the bifurcation point r = 0 and for r < 0 no fixed points exist.   
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Mathematical and graphical analysis 

System 

2 2
( ) ( )x r x y y f x r x g y y= − = − = − = −  

Fixed points ( ),e ex y  

    2
0 0 0e e ey y x r x x r= = = − = =   

The system equation y y= −   is independent of the control parameter 

r.  For all initial values y(0) will exponentially converge to y = 0 

                                  ( ) 0t y t→ →  

Stability 

To determine the stabilities of a fixed point one needs to evaluate the 

Jacobian matrix of the system for local stability at (xe, ye) and find the 

eigenvalues. The Jacobian matrix is 

 
/ / 2 0

( , )
/ / 0 1

f x f y x
x y

g x g y

    −   
= =   

    −   
J  

 
/ / 2 0

( , )
/ / 0 1

e

e

e e

x x

f x f y x
x y

g x g y
=

    −   
= =   

    −   
J  

 

We need to consider the three possibilities of the control parameter r: 

r < 0,  r = 0, and r > 0.  
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Case 1:  r < 0       cs123.py              

There are no fixed points since 0x   for all values of x 

( ) ( ) 0t x t y t→ →− →  

 

Fig. 1.1.   Phase portrait (quiver and streamline plots) 

 

Fig 1.2.  Trajectories;   ( ) ( ) 0t x t y t→ →− →  
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Case 2:  r = 0       cs122.py        

Fixed point  (0, 0)     

         2
( ) ( ) 0x x y y t x t y t= − = − → →− →  

 0

0 0

0 1

 
=  

− 
J   

The eigenvalues of the Jacobian are (0, -1) This indicates that the 

fixed point (0, 0) is semi-stable and is a saddle equilibrium. 

 

Fig 2.1.  Phase portrait. The single fixed point is at the Origin (0, 0). 

(0) 0 ( ) ( ) 0

(0) 0 ( ) 0 ( ) 0

t x x t y t

x x t y t

→  → − →

 → →
 

Using the phase portrait plots it is easy to predict the trajectory for 

any initial condition as the flow direction is given by an arrow in the 

quiver plot or by the tangent to a streamline.  
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Fig 2.3.  Trajectories. The single fixed point is at the Origin (0, 0). 

(0) 0 ( ) ( ) 0

(0) 0 ( ) 0 ( ) 0

t x x t y t

x x t y t

→  → − →

 → →
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Case 3: r > 0     cs120.py 

The system has two fixed points:    ( ) ( ), 0 , 0r r− +  

The Jacobian matrices are JP and JM  

2 0 2 0

0 1 0 1
e e

r r
x r x r

   − +
= + = = − =   

− −   
P MJ J  

Consider the case when r = 9, then the fixed points and eigenvalues of 

the Jacobian are:  

xe = (-3, 0)   eigenvalues = (+6, -1) 

The eigenvalues are real (positive, negative) therefore the fixed point 

is a saddle. and is unstable. 

xe = (+3, 0)   eigenvalues = (-6, -1) 

The eigenvalues are real (negative, negative) therefore the fixed point 

is a stable node.  

 

Fig . 3.1.  Phase portraits: Vector fields.  

The fixed point (-3, 0) is unstable and the fixed point (+3,0) is stable. 
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Fig. 3.2.  Trajectories   

                (0) 0.50 (0) 0.01 ( ) 3.0 ( ) 0x y t x t y t= = → → →  

 

 

Fig. 3.3. Phase portrait and trajectories 

 ( )2(0) 5.00 (0) 5.00 2x y t= = =  

 ( )2(0) 5.00 (0) 5.00 2x y t= = − =  

  ( )2(0) 3.01 (0) 5.00 1x y t= − = =  

 ( )2(0) 5.00 (0) 5.00 2x y t= = =  
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( )2(0) 3.01 (0) 5.00 1x y t= − = − =  

( )2(0) 3.01 (0) 5.00 1x y t= − = − =  

( )2(0) 2.99 (0) 5.00 1x y t= − = =  

( )2(0) 2.99 (0) 5.00 1x y t= − = − =  

 

The fixed point (-3,0) is unstable. For two initial conditions 

surrounding this unstable fixed point, the trajectories maybe very 

different. 

(0) 3.01 (0) 5 ( ) ( ) 0x y t x t y t= − = → → − →  

(0) 2.99 (0) 5 ( ) 3 ( ) 0x y t x t y t= − = → →+ →  

 

From the graphical analysis, we see that the system with r > 0 has two 

fixed points, one is a stable node ( ),0r and the other is a saddle 

point. When r decreases, the saddle and the stable node approach each 

other. They collide at r = 0 and disappear when r < 0. This type of 

bifurcation is known as saddle-node bifurcation (figure 3.4). The 

name “saddle-node” is because its basic mechanism is the collision of 

two fixed points - a saddle and a node of the system and in this 

example the bifurcation point is r = 0. 
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Fig. 3.4.  Bifurcation diagram 

Even after the fixed points have annihilated each other, they continue 

to influence the flow as they leave a ghost, a bottleneck region that 

sucks trajectories in and delays them before allowing passage out the 

other side. Bifurcation theory is rife with conflicting terminology, and 

different people use different words for the same thing. For example, 

the saddle-node bifurcation is sometimes called a fold bifurcation. 
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[2D] VIEW OF SYSTEM EQUATIONS 

2
9x x y y= − = −  

 

Fig 4.1.  [2D] view of system equations  x    y  

x  (xdot)  > 0   flow is in the + x direction →  

x  (xdot)  < 0   flow is in the - x direction    

x  (xdot)  = 0           xe = -3  →   (unstable)  

                            →   xe = +3 (stable)    

y  (ydot)  > 0   flow is in the + y direction   

y  (ydot)  < 0   flow is in the - y direction    

                                       
y  (ydot)  = 0       ye = 0    (stable)  

                                   
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Fig. 4.2.  Slope angle  .  

5 00 1 1.0. 5    = + == → − = −=   

The slope function and its slope angle are ( , ) / tandy x y dx =  where 

 is expressed in rad/ . Therefore 1 1−   + .  

 

The flow is towards the stable fixed point at (+3,0) and way from the 

unstable fixed point (-3, 0). 

  

 

 

 


