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PITCHFORK BIFURCATIONS 

 

The pitchfork bifurcation is common in physical problems that have a 

symmetry. For example, many problems have a spatial symmetry 

between left and right. In such cases, fixed points tend to appear and 

disappear in symmetrical pairs. For example, consider a vertical beam 

loaded at the top. For a small load, the beam is stable corresponding 

to zero horizontal deflection. But, if the load exceeds the buckling 

threshold, the beam may buckle to either the left or the right. The 

vertical position has gone unstable, and two new symmetrical fixed 

points, corresponding to left- and right-buckled configurations, have 

been born. There are two very different types of pitchfork bifurcation. 

The simpler type is called supercritical, and will be discussed first. 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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Example 1        Supercritical pitchfork bifurcation    

Codes:  cs126.py (r < 0),  cs127.py (r = 0) and cs128.py (r > 0) 

 

Consider a [2D] parametric system given by 

 3
x r x x y y= − = −  

 

Note that this equation for x is invariant under the change of variables 

x → -x. That is, if we replace x by -x and then cancel the resulting 

minus signs on both sides of the equation, the equation does not 

change. This invariance is the mathematical expression 

of the left-right symmetry mentioned earlier and the vector fields are 

equivalent. 

 

Mathematical analysis and graphical analysis 

Fixed points:   0 0 0 0e e ex x x r y y=  = =  =  =  

There is one fixed points when r < 0:   (0,0) 

There is one fixed points when r = 0:   (0,0) 

There are three fixed points when r > 0 

(0, 0), (+ r , 0), and (- r , 0) 
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The  Jacobian of the system is 

 
2/ / 3 0

( , )
/ / 0 1

f x f y r x
x y

g x g y

      −
= =   

    −   
J  

r < 0          There is only one stable fixed point (0, 0) 

Let r = -9     ( )
9 0

(0,0) eigenvalues 9, 1
0 1

− 
= = − − 

− 
J  

Both eigenvalues are negative, therefore the fixed point is stable. 

 

r = 0           There is only one stable fixed point (0, 0) 

Let r = 0     ( )
0 0

(0,0) eigenvalues 0, 1
0 1

 
= = − 

− 
J  

A dynamical system with one zero eigenvalue and one negative 

eigenvalue is stable but not asymptotically stable, meaning it stays 

near the equilibrium point under small perturbations but doesn't 

necessarily return to it over time, and is generally unstable in the strict 

sense as the system will not return to the Origin if the perturbation is 

along the direction of the zero eigenvalue. The zero eigenvalue 

indicates a degenerate case where there are infinite equilibrium points 

(there isn't a unique equilibrium point). A perturbation along the 

eigenvector associated with the zero eigenvalue will leave the system 

in a new equilibrium state.  
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The negative eigenvalue suggests a stable direction. If perturbed, the 

system will decay towards zero along the eigenvector corresponding 

to this negative eigenvalue. The negative eigenvalue ensures that the 

system will remain within a bounded region around the equilibrium if 

perturbed.  

 

The zero eigenvalue introduces a lack of a unique equilibrium and the 

possibility of remaining in a different equilibrium state, while the 

negative eigenvalue provides a stable decay towards the Origin within 

that system. 

 

 

r > 0     There are three fixed point: 

               (0, 0) is unstable 

               ( ),0r− , and ( ),0r+  are both stable 

Let r = 9     ( )
6 0

( 3,0) eigenvalues 6, 1
0 1

− 
 = = − − 

− 
J stable 

                    ( )
9 0

(0,0) eigenvalues 9, 1
0 1

 
= = − 

− 
J     unstable 
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Fig. 1     The fixed points of the system for r < 0, r = 0 and r > 0. 

                  Red dot unstable,  blue dots are stable 
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Fig. 2     Phase portraits. 
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When r < 0, the Origin is the only fixed point, and it is stable. When r 

= 0, the Origin is still stable, but much weaker. Now solutions no 

longer decay exponentially fast—instead the decay is a much slower. 

This lethargic decay is called critical slowing down.  Finally, when 

r > 0, the Origin has become unstable. Two new stable fixed points 

appear on either side of the origin, symmetrically 

located at ex r=  . The reason for the term “pitchfork” becomes 

clear when we plot the bifurcation diagram (figure 3). Actually, 

pitchfork trifurcation might be a better word! This type of 

bifurcation is known as supercritical pitchfork bifurcation. 

• r < 0, the only fixed point is a stable node at the Origin. 

• r = 0, the Origin is still stable, but now we have very slow 

(algebraic) decay along the X-direction instead of exponential 

decay; this is the phenomenon of “critical slowing down. 

• r > 0, the Origin loses stability and gives birth to two new stable 

fixed points symmetrically located at ( ),0r . 

 

Fig. 3. Supercritical bifurcation diagram. Bifurcation point r = 0. 
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Example 2        Subcritical pitchfork bifurcation    

In the supercritical case 3
x r x x y y= − = −  (Example 3A), the cubic 

term is stabilizing and it acts as a restoring force that pulls x(t) back 

toward x = 0. If instead the cubic term were destabilizing, as in 

 3
x r x x y y= + = −  

then we’d have a subcritical pitchfork bifurcation.  

 

Fig. 4.    Subcritical pitchfork bifurcation. Bifurcation point r = 0 
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https://courses.physics.ucsd.edu/2009/Spring/physics221a/LECTURE

S/CH02_BIFURCATIONS.pdf 

 

https://courses.physics.ucsd.edu/2020/Fall/physics200a/lectures.html 

 

 

https://courses.physics.ucsd.edu/2009/Spring/physics221a/LECTURES/CH02_BIFURCATIONS.pdf
https://courses.physics.ucsd.edu/2009/Spring/physics221a/LECTURES/CH02_BIFURCATIONS.pdf
https://courses.physics.ucsd.edu/2020/Fall/physics200a/lectures.html

