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A Hopf bifurcation is said to occur when varying a parameter of the
system causes the set of solutions (trajectories) to change from being

attracted to or repelled by a fixed point to a stable orbit.

Consider a two-dimensional system expressed in polar coordinates

(R,0) with control (bifurcation) parameter r
R=rR-R f=o0
where R (R > O) 1s the radius vector of the trajectory, 6 is the

azimuthal angle, and w is the angular frequency. The Cartesian

coordinates (x ,y) and period 7 of oscillation are

x=Rcos® y=Rsin@ R* =x>+)> tanf=y/x
T'=2r/w

This 1s a very simple example of a supercritical Hopf bifurcation.
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A good starting point to investigate the dynamics of the system is to

plot the system equation (R,R) as shown in figure 1. In the analysis

of the system dynamics, you need to consider the three cases » <0,

r=0andr>0.

Fig. 1. Plot of the R subsystem equation. Stable values of the radius
Ry occur when R =0. The Origin (0, 0) is a fixed point for all values

of ». When r = 4, the two stable radii are R, =0 and R = Ja=2.

Consider the initial condition R(0) = 1.0. We can predict the change in

the radius from figure 1.
e r=—4 R0)=1 R<0 =¢—>mo R()—>0
Origin (0,0) 1s a stable fixed point.
e r=0 R(0)=1 R<0 =t—>x0 R({t)—>0
Origin (0,0) 1s a stable fixed point.
e r=+4 R0)=1 R>0 =¢—>w R(t)—>?2
Origin (0,0) 1s an unstable fixed point.

The steady-state radius is Ry = 2 where R =0



Next, we can solve the system equations to give the time evolution of
the trajectories given the initial conditions. The solution of the &

subsystem is

0 =wt

The R subsystem is solved using the Python function odeint. The
trajectories when » < 0 for the R and 6 subsystems are shown in
figure 1. The more negative the » value then the greater the rate of the
decay for R reach zero. Figure 2 shows the time evolution of the
trajectories when r > 0. For positive r values, the motion becomes

sinusoidal with a period 7= 1 when o =27 and the amplitude of the

oscillation 1s \/; )
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Fig. 1 The more negative the value of the control parameter 7, the

more rapidly the oscillation decay to zero.
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Fig. 2. Time evolution of the system » > 0. The trajectories (x red, y
blue are sinusoidal with period 7= 1.00 and amplitude Jr.

Once, the ODEs have been solved, the phase portrait can be plotted
for different » values and different initial conditions (R(0),8(0)).

Figure 3 shows the phase portraits for different negative r values. The
less negative the r value than the more slowly the trajectories spiral
towards the fixed point at the Origin (0, 0).

r<0 f’(0)=r<0 Origin (0, 0) is a stable spiral
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Fig. 3A. Phase portraits (» < 0). The more negative the value of the
control parameter r, the more rapidly the oscillation decay to fixed
point at the Origin (0, 0).



r=-0.50

Fig. 3B.  Phase portrait of the system » < 0 with different initial
conditions. The fixed point is at the Origin (0, 0) is a stable spiral
and all trajectories are attracted to it in an anticlockwise direction.
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Fig. 3C. Phase portrait of the system » = 0. The fixed point is at the
Origin (0, 0) 1s a weak stable spiral and all trajectories are attracted
to it very slowly in an anticlockwise direction.



r=4.00

2_

1_

> 0
>

_1_

_2_

—2 -1 0 1 2
t

Fig. 4 Phase portrait plot showing the limit cycle with radius R

R, =r R,=+/4=200

When r > 0 all trajectories are repelled from the Origin which is now

an unstable fixed point and the attractor is a stable circular limit
cycle with radius R = Jr . In this example, in terms of the flow in

phase space, the supercritical Hopf bifurcation occurs at » = 0 when
the stable spiral changes into an unstable spiral surrounded by a
circular orbit of radius R = Jr . When r <0, the fixed point is at the
Origin (0, 0) and is a stable spiral and all trajectories are attracted to it

in anticlockwise direction. For » = 0, the Origin is still a stable spiral,

but is very weak. For » > 0, the Origin is an unstable spiral, and the

orbit in phase space is a stable limit cycle of radius R = Jr



The phase portraits can be shown in Python as a streamplot. Such
plots help visualize a trajectory for different initial conditions without

solving the system ODEs.

Figure 5 shows phase portraits and trajectories for » = -4, » = 0 and
r=4. For r <0, the Origin (0, 0) acts as a stable fixed point and
strongly attracts the trajectory. The trajectory is a stable spiral. For

r =0, the Origin (0, 0) acts as a weak stable fixed point and weaky
attracts the trajectory. The trajectory is a stable spiral. When »> 0
then the dynamics is very different. A bifurcation occurs at =0
where the Origin changes from stable to unstable as » passes through
zero and the spiral trajectory disappears and becomes a limit cycle

about the Origin.



Fig. 5. Phase portrait and trajectory for » = -4, r =0 and r = 4.
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Mathematical analysis

The system equations are
R=rR-R 0=0

and need to be analysed for three cases: » <0, =0 and r > 0.

The solution of the 8 subsystem is

0 =wt

Steady-state solutions for the R subsystem are determined from

R =0 and the stability from f(R)=rR-R’ f'(R)=r—-3R>.

One steady-state solution 1s when the radius vector is zero, R = 0 and
this corresponds to the fixed point at the Origin (0, 0). The stability at
the Origin depends on the control parameter

r<0 f’(0)=r<0 Originis a strong stable fixed point (spiral)
r=0 f’(0)=r=0 Origin is a weak stable fixed point (spiral)
r>0 f’(0)=r>0 Origin is an unstable fixed point (limit cycle)

The steady-state solution for » >0 1s R = Jr and this corresponds to a
circle of radius R =+/r . So, for <0 the Origin is the only fixed
point and for » > 0 fixed points exist at on the circle of radius R = Jr
The stability is stable since f '(\/; ) =—2r <0 and the flow will be

attracted to this circle.
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The Cartesian form of our system equations is

x=rx—y—x(x2+y2> )'/=x+ry—y(x2+y2)

where w=1.

We can calculate the Jacobian for the fixed point at the Origin (0, 0).
f:rx—y—x(x2 +y2)
of lox=r-3x"—y* of /oy=—1-2xy

g=x+ry—y(x2+y2)

2 2

Og/ox=1-2xy Og/o0y=r—x

ro 1
soo-{’, !

The eigenvalues for the Jacobian matrix at the Origin (0, 0) are

_3y

eigenvalues =(r+j, r—j) j= J-1

r=—4 Ay=—4+j Ly=-4-j] r=+4 Ay=+4+j A =+4—

The bifurcation point (0, 0) 1s called a focus or spiral point when
eigenvalues are complex-conjugate. The focus is stable when the
eigenvalues have negative real part and unstable when they have
positive real part. Therefore, the Origin is a stable spiral when » <0
and an unstable spiral when » > 0. The eigenvalues cross the
imaginary axis from left to right as the parameter » changes from
negative to positive values. Hence, a supercritical Hopf bifurcation
occurs when a stable spiral changes into an unstable spiral surrounded

by a limit cycle.
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