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A Hopf bifurcation is said to occur when varying a parameter of the 

system causes the set of solutions (trajectories) to change from being 

attracted to or repelled by a fixed point to a stable orbit. 

Consider a two-dimensional system expressed in polar coordinates 

( ),R   with control (bifurcation) parameter r  

 3
R r R R  = − =  

where R ( )0R   is the radius vector of the trajectory,   is the 

azimuthal angle, and   is the angular frequency. The Cartesian 

coordinates (x ,y) and period T of oscillation are 
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This is a very simple example of a supercritical Hopf bifurcation. 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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A good starting point to investigate the dynamics of the system is to 

plot the system equation ( ),R R  as shown in figure 1. In the analysis 

of the system dynamics, you need to consider the three cases r < 0,     

r = 0 and r > 0. 

 

Fig. 1.   Plot of the R subsystem equation. Stable values of the radius 

Rss occur when 0R = .  The Origin (0, 0) is a fixed point for all values 

of r. When r = 4, the two stable radii are Rss = 0 and 4 2ssR = = . 

Consider the initial condition R(0) = 1.0. We can predict the change in 

the radius from figure 1. 

• 4 (0) 1 0 ( ) 0r R R t R t= − =   → →     

          Origin (0,0) is a stable fixed point. 

• 0 (0) 1 0 ( ) 0r R R t R t= =   → →    

          Origin (0,0) is a stable fixed point. 

• 4 (0) 1 0 ( ) 2r R R t R t= + =   → →  

          Origin (0,0) is an unstable fixed point. 

          The steady-state radius is Rss = 2 where 0R =  
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Next, we can solve the system equations to give the time evolution of 

the trajectories given the initial conditions. The solution of the   

subsystem is 

 t =  

 

The R subsystem is solved using the Python function odeint. The 

trajectories when r < 0 for the R and   subsystems are shown in 

figure 1. The more negative the r value then the greater the rate of the 

decay for R reach zero. Figure 2 shows the time evolution of the 

trajectories when r > 0. For positive r values, the motion becomes 

sinusoidal with a period T = 1 when 2 =  and the amplitude of the 

oscillation is r . 

  



4 
 

 

Fig. 1   The more negative the value of the control parameter r, the 

more rapidly the oscillation decay to zero.    
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Fig. 2.   Time evolution of the system r > 0. The trajectories (x red, y 

blue are sinusoidal with period T = 1.00 and amplitude r .  

 

Once, the ODEs have been solved, the phase portrait can be plotted 

for different r values and different initial conditions ( )(0), (0)R  .  

 

Figure 3 shows the phase portraits for different negative r values. The 

less negative the r value than the more slowly the trajectories spiral 

towards the fixed point at the Origin (0, 0).  

r < 0   f ’(0) = r < 0    Origin (0, 0) is a stable spiral 
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Fig. 3A. Phase portraits (r < 0). The more negative the value of the 

control parameter r, the more rapidly the oscillation decay to fixed 

point at the Origin (0, 0).    
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Fig. 3B.     Phase portrait of the system r < 0 with different initial 

conditions. The fixed point is at the Origin (0, 0) is a stable spiral 

and all trajectories are attracted to it in an anticlockwise direction.  

 

 

Fig. 3C.  Phase portrait of the system r = 0. The fixed point is at the 

Origin (0, 0) is a weak stable spiral and all trajectories are attracted 

to it very slowly in an anticlockwise direction.      
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Fig. 4    Phase portrait plot showing the limit cycle with radius R 

                  4 2.00ss ssR r R= = =  

 

When r > 0 all trajectories are repelled from the Origin which is now 

an unstable fixed point and the attractor is a stable circular limit 

cycle with radius ssR r= . In this example, in terms of the flow in 

phase space, the supercritical Hopf bifurcation occurs at r = 0 when 

the stable spiral changes into an unstable spiral surrounded by a 

circular orbit of radius ssR r= . When r < 0, the fixed point is at the 

Origin (0, 0) and is a stable spiral and all trajectories are attracted to it 

in anticlockwise direction. For r = 0, the Origin is still a stable spiral, 

but is very weak. For r > 0, the Origin is an unstable spiral, and the 

orbit in phase space is a stable limit cycle of radius R r= . 
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The phase portraits can be shown in Python as a streamplot. Such 

plots help visualize a trajectory for different initial conditions without 

solving the system ODEs.  

 

Figure 5 shows phase portraits and trajectories for r = -4, r = 0 and      

r = 4. For r < 0, the Origin (0, 0) acts as a stable fixed point and 

strongly attracts the trajectory. The trajectory is a stable spiral. For     

r = 0, the Origin (0, 0) acts as a weak stable fixed point and weaky 

attracts the trajectory. The trajectory is a stable spiral. When r > 0 

then the dynamics is very different. A bifurcation occurs at r = 0 

where the Origin changes from stable to unstable as r passes through 

zero and the spiral trajectory disappears and becomes a limit cycle 

about the Origin.      

  



10 
 

 

 

 

Fig. 5.  Phase portrait and trajectory for r = -4, r = 0 and r = 4. 
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Mathematical analysis 

The system equations are 

3
R r R R  = − =  

and need to be analysed for three cases: r < 0, r = 0 and r > 0. 

 

The solution of the   subsystem is 

 t =  

 

 Steady-state solutions for the R subsystem are determined from 

0R =  and the stability from 3 2
( ) '( ) 3f R r R R f R r R= − = − . 

 

One steady-state solution is when the radius vector is zero, R = 0 and 

this corresponds to the fixed point at the Origin (0, 0). The stability at 

the Origin depends on the control parameter r 

r < 0   f ’(0) = r < 0    Origin is a strong stable fixed point (spiral)  

r = 0   f ’(0) = r = 0    Origin is a weak stable fixed point (spiral)  

r > 0   f ’(0) = r > 0    Origin is an unstable fixed point (limit cycle) 

 

The steady-state solution for 0r   is R r= and this corresponds to a 

circle of radius R r= . So, for 0r   the Origin is the only fixed 

point and for r > 0 fixed points exist at on the circle of radius R r= . 

The stability is stable since '( ) 2 0f r r= −   and the flow will be 

attracted to this circle. 
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The Cartesian form of our system equations is 

 ( ) ( )2 2 2 2
x r x y x x y y x r y y x y= − − + = + − +  

where 1 = . 

 

We can calculate the Jacobian for the fixed point at the Origin (0, 0). 
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The eigenvalues for the Jacobian matrix at the Origin (0, 0) are 

 ( ), 1eigenvalues r j r j j= + − = −  

 0 1 0 14 4 4 4 4 4r j j r j j   = − = − + = − − = + = + + = + −   

 

The bifurcation point (0, 0) is called a focus or spiral point when 

eigenvalues are complex-conjugate. The focus is stable when the 

eigenvalues have negative real part and unstable when they have 

positive real part. Therefore, the Origin is a stable spiral when r < 0 

and an unstable spiral when r > 0. The eigenvalues cross the 

imaginary axis from left to right as the parameter r changes from 

negative to positive values. Hence, a supercritical Hopf bifurcation 

occurs when a stable spiral changes into an unstable spiral surrounded 

by a limit cycle. 


