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SUBCRITICAL HOPF BIFURCATION  

The Hopf bifurcations come in both super- and subcritical 

varieties. The subcritical case is always much more dramatic, and 

potentially dangerous in engineering applications. After the 

bifurcation, the trajectories must jump to a distant attractor, which 

may be a fixed point, another limit cycle, or infinity. 

 

Consider a [2D] system with bifurcation parameter r 
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The system has a unique fixed point at the Origin (0, 0). 

The ODEs governing the system are best expressed in polar 

coordinates where  

 2 2 2
cos sin tan /x R y R R x y y x  = = = + =  

After some tedious algebra, the ODEs in polar coordinates are 

 3 5
1R r R R R = + − =  

The ODEs now are decoupled and are easy to analyse for r < 0, r = 0 

and r > 0. 

 

 

The important difference from the earlier supercritical case is that the 

cubic term R3 is now destabilizing; it helps to drive trajectories away 

from the Origin. 

 

Mathematical analysis 

The fixed points Re are determined from 0R =  and the stability from 
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r < -1/4    Origin (0, 0) is the only fixed point and is a stable spiral.  

 

-1/4 < r < 0  Three steady-states 

Consider the case when r = -0.2 then from equation 1, the three 

steady-states and their stability are: 

 

0 '(0) 0.2 0 stable fixed point

0.851 '(0.851) 0.647 0 stable radius

0.526 '(0.526) 0.247 0 unstable radius
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r = 0  Two steady-states 

 

0 '(0) 0 unstable fixed point

1 '(0) 2 0 stable radius
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r > 0   Two steady-states     

Consider the case when r = +0.2 then from equation 1, the two steady-

states and their stability are: 

 
0 '(0) 0.2 0 unstable

1.082 '(1.082) 3.142 0 stable

e
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= = − 
 

The steady-state solutions are: the Origin (0, 0) which is unstable and 

all points on the circle radius Re are stable. This gives a stable spiral in 

the phase portrait. 
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Graphical analysis 

A good starting point to investigate the dynamics of the system is to 

plot the system equation ( ),R R  as shown in figure 1. In the analysis 

of the system dynamics, you need to consider the four cases r < -0.25,     

-0.25 < r < 0 and r > 0. 

 

Fig. 1.  The R subsystem plots for different r values. A positive slope 

indicates an instability and a negative slope indicates stability of the 

radius vector R. 

 

r = -0.50 < -0.25    one stable fixed point, Origin (0, 0) 

                Re = 0  stable (negative slope) 

 

-0.25 < r = -0.15 < 0      three steady-state radii 

               Re = 0  stable (negative slope) 

               Re =0.429  unstable (positive slope) 

       Re = 0.903  stable (negative slope) 
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r = 0    two steady-state radii 

                Re = 0  unstable (positive slope) 

                Re = 1.000  stable (negative slope) 

          

r > 0     two steady-state radii 

                Re = 0  unstable (positive slope) 

                r = 0.25   Re = 1.099  stable (negative slope) 

                r = 0.50   Re = 1.169  stable (negative slope) 

 

Phase portraits and trajectories 

 

Fig. 2.1.   r = -0.50 < -0.25  The Origin (0, 0) is a stable focus. For all 

initial conditions where the flow spirals to the Origin. 
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Fig. 2.2.   -0.25 < r = -0.150 < 0  The Origin (0, 0) is a stable focus 

and attracts all orbits for R(0) < Re = 0.429 (unstable steady-state 

radius). For all initial conditions R(0) > Re = 0.429, the orbits are 

attracted to the stable steady-state radius Re = 0.903 and thus the 

steady-state orbit is a circular limit cycle. The bifurcation occurs at 

the bifurcation parameter r = rC = -0.25.  
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Fig. 2.3.   The Origin (0, 0) is unstable. The circle with radius Re = 1 

is a stable limit cycle.  For all initial conditions other than the Origin 

are attracted to the steady-state circle with radius Re = 1. 

 

 

Fig. 2.3.   The Origin (0, 0) is unstable. The circle with radius          

Re = 1.099 is a stable limit cycle.  For all initial conditions other than 

the Origin are attracted to the steady-state circle with radius Re = 

1.099. 
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Phase portrait (streamplot), trajectory, and time evolution 

r < -0.25 

 

 

Fig. 3.1.  If r < -1/4, then the only fixed point is the Origin (0, 0) and 

the all orbits are stable spirals.      
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-1/4 < r < 0 there are three steady-states. 

 

Fig. 4.1   R(0) = 0.60 trajectory spirals to the stable steady-state radius 

Re = 0.903 and is repelled from the unstable steady-state radius          

Rss = 0.429. R(0) = 0.40 trajectory spirals to the fixed point at the 

Origin and is repelled from the unstable steady-state radius Rss = 

0.429.        

 

Fig. 4.2.  The Origin (R = 0) is a stable fixed point (negative slope). 

The steady-state radius Rss = 0.429 is unstable (positive slope). The 

steady-state radius Rss = 0.903 is stable (negative slope).                
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Fig. 4.3.  R(0) = 0.40. Trajectory spirals to the fixed point at the 

Origin. 

 

Fig. 4.4.  R(0) = 0.60. Trajectory spirals to the stable steady-state 

radius RSS = 0.903.  
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For -0.25 < r < 0  there are two attractors, a stable limit cycle and a 

stable fixed point at the Origin. Between them lies an unstable cycle. 

For initial conditions near the unstable steady-state radius are repelled 

to either the fixed point at the Origin or the stable steady-state radius. 

This makes it impossible to make a prediction on the trajectory for 

small changes in the initial conditions near the unstable steady-state 

radius.  

 

r = 0 

 

Fig. 5.1. The unstable steady-state radius has disappeared when r is 

increased to zero and the stability of the Origin has changed from 

stable to unstable.  For initial conditions near the Origin, all 

trajectories spiral outward as they are attracted to the steady-state 

radius RSS = 1. 
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Fig. 5.2. The radius R of the orbit increases to its steady-state value 

RSS = 1.00 and the orbit is a circle centred on the Origin. 

 

 

Fig. 5.3.  For all initial conditions where R(0) > RSS =1.00 converge to 

the circle of radius RSS = 1.00. 
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Fig. 5.4.  For all initial conditions where R(0) > RSS =1.00 converge to 

the circle of radius RSS = 1.00. The trajectories are now a circle of 

radius RSS = 1.00 centred on the Origin.   

 

r = 0 is a bifurcation point. As r increases, the unstable cycle 

tightens like a noose around the fixed point (0, 0). A subcritical Hopf 

bifurcation occurs at r = 0, where the unstable cycle shrinks to zero 

amplitude and engulfs the Origin, rendering it unstable.  
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r > 0   

There are two fixed points when r > 0, (0, 0) which is unstable and a 

steady-state radius. 

 

Fig. 6.1.  All trajectories will be draw to the stable limit cycle. 
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Fig. 6.2.  The trajectory is strongly drawn to the limit circle of radius 

RSS = 1.169 with large amplitude oscillations.  

 

Fig. 6.3.   The trajectory is repelled from the Origin and attracted to 

the steady-state circular orbit of radius RSS = 1.169. 
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Fig. 6.4.   r > 0 the large-amplitude limit cycle is now the only 

attractor. Solutions that used to remain near the Origin are now forced 

to grow into large-amplitude oscillations.     

 

 

A subcritical Hopf bifurcation is a dynamic event where a stable 

equilibrium point in a system abruptly loses its stability and becomes 

unstable. This transition occurs when an unstable, pre-existing limit 

cycle (a solution that oscillates periodically) shrinks and collides with 

the equilibrium point, transferring its instability. Unlike a supercritical 

Hopf bifurcation, the resulting stable periodic solution is a large-

amplitude oscillation that is not born continuously from zero but 

jumps into existence, often leading to hard, dangerous, or 

discontinuous changes in behaviour, known as a "hard" bifurcation 
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