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A homoclinic bifurcation occurs when a periodic orbit collides with 

a saddle point, leading to significant changes in the dynamics of a 

system, often resulting in chaotic behaviour. A homoclinic bifurcation 

is a type of bifurcation in dynamical systems where a trajectory (orbit) 

returns to a saddle point in the phase space. Specifically, it involves a 

homoclinic orbit, which is an orbit that starts and ends at the same 

saddle equilibrium point. As parameters in the system change, the 

nature of these orbits can lead to the creation or destruction of 

periodic orbits, significantly altering the system's dynamics.  

 

  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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Homoclinic bifurcations typically occur in systems with saddle points, 

where the stable and unstable manifolds of the saddle intersect. This 

intersection can lead to complex dynamics, including chaotic 

behaviour.  Unlike local bifurcations, which only affect the behaviour 

near a fixed point, homoclinic bifurcations can have global 

implications, affecting the entire phase space and leading to changes 

in the topology of trajectories. At the bifurcation point, the period of 

the periodic orbit approaches infinity, indicating a transition from 

periodic to non-periodic behaviour.  

 

In phase portraits, a homoclinic bifurcation can be visualized as a 

limit cycle colliding with a saddle point, leading to the disappearance 

of the limit cycle and the emergence of homoclinic orbits. Homoclinic 

bifurcations are often associated with chaotic dynamics, as they can 

lead to the creation of infinitely many periodic orbits in the vicinity of 

the bifurcation point.  

 

Homoclinic bifurcations are crucial in understanding the behaviour of 

dynamical systems, particularly in the context of chaos and stability. 

They illustrate how small changes in parameters can lead to 

significant and often unpredictable changes in system behaviour, 

making them a key area of study in mathematical and applied 

sciences. 
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Consider the example 
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The fixed points of the system are (-1, 0), (0, 0), and (+1, 0). The 

fixed point (0, 0) is a saddle and the other two are centres. The phase 

space orbit is dependent upon the initial conditions (x(0), y(0)). 

 

To study the behaviour of the system, it is best to consider an initial 

value of r = -0.900 and then run the simulation ds1511.py for small 

positive increments in r. The phase space orbit depends upon the 

initial conditions x(0) and y(0), so they have to be chosen with care. 

The critical value for the bifurcation parameter is rc ~ -0.865. So, we 

need to consider values of r < rc and r > rc. 

 

r < rc 

The fixed points and eigenvalues for r  = -0.900 are: 

 (-1,0)     ev = [ 1.02 -2.925]  → unstable 

 (0, 0)      ev =  [ 0.647 -1.547]  → unstable  

         (+1, 0)    ev = [0.05+0.999j 0.05-0.999j] 

              → oscillations: a stable limit cycle and as r increases,  

                   the limit cycle passes closer to a saddle point at the Origin 
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r > rc 

The fixed points and eigenvalues for r  = -0.800 > rc are: 

 (-1,0)     ev = [ 1.052, -2.852] → unstable 

 (0, 0)      ev = [ 0.677 -1.477]  → unstable saddle 

         (+1, 0)    ev = [0.1+0.995j 0.1-0.995j] 

              →  the limit cycle swells and breaks the connection to the 

                    fixed point at the Origin and the loop is destroyed into the 

                    saddle, creating a homoclinic orbit. 

 

Graphical analysis 

 

Fig. 1.  Phase portrait (streamplot). The magenta lines are the x 

nullcline (horizontal) and the y nullclines (vertical). 
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Fig. 2. Trajectories in phase space. For trajectories with r > rC, the 

trajectories will diverge to infinity.  
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Fig. 3.  x and y time evolution of trajectories. 

 

The key to this bifurcation is the behaviour of the unstable manifold 

of the saddle. Look at the branch of the unstable manifold that leaves 

the Origin: after it loops around, it either hits the Origin veers off 

to one side or the other. 

 

 

 


