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We can consider the motion of a particle of mass m whose motion is
governed by a potential energy function V' corresponding to a double

potential well. The potential energy for the double well is

Vi(x)= —%xz + %x‘l

Newton’s second law can be expressed as
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This equation can be written as a system of first order differential
equations (m = 1)

X=y

y=x-x
A good starting point in the analysis of the system’s dynamics is to
plot the potential energy function ¥(x) as shown in figure 1. The
equilibrium positions occur when the force acting on the particle is
zero and this means that dV' / dx = 0. Thus, the equilibrium points are
when the slope of the potential energy function is zero. Therefore,
from figure 1 it is obvious that the three fixed points are x = -1 which
is stable, x = +1 (stable) and x = 0 (unstable). A stable point is when
the particle is given a small displacement from equilibrium, the force
acting on the particle is such that the particle is attracted back to the

equilibrium point where as for an unstable fixed point, the force

repels the particle away from the fixed point.
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Fig. 1. Potential energy function V(x) with fixed points at x = -1
(stable), x = 0 (unstable) and x = +1 (stable).



The equation of motion for the particle in the double well potential is

mx+dV /dc=0

We can integrate the equation of motion with respect to time
m)'c'ic+(dV / dx))'c =0
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This equation states that the sum of the kinetic energy K plus the
potential energy V is a constant and independent of time. The sum of
the kinetic energy plus the potential energy is called the total energy £
of the system.

E =K +V =constant

We say that the total energy is a conserved quantity and the system is

a conservative system.

Figure 2 shows the phase portrait as a streamplot. A trajectory follows
a streamline and at any point the direction of motion is tangent to the
streamline. From the streamplot one can predict the motion of the
particle given any initial condition. The particle may be bound to orbit

around one or the other stable fixed points located at x, = +1.

Otherwise the orbit encompasses all three fixed points. Notice that the

flow near the Origin x. = 0 is always repelled.



Fig. 2. Phase portrait as a streamplot. A conservative system can not
have an attracting fixed point, that is, a trajectory never converges to
the fixed point. The fixed points (-1, 0) and (+1, 0) are centres, and
the fixed point at the Origin (0, 0) is a saddle.

Figure 3 shows the phase portrait plot of figure 2 but seven
trajectories with different initial conditions are also shown. A
summary of the initial conditions and the total energy for each
trajectory is displayed in the Console Window:

x0 yO E
1.10 1.10 0.37
1.20 0.00 -0.20
1.20 0.70 0.04
1.20 0.60 -0.02
-1.00 -0.65 -0.04
-1.00 0.10 -0.24
-1.80 0.10 1.01
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Fig. 3. Phase portrait and trajectories with different initial
conditions. Green dots shown initial positions x(0), (0).

For all initial conditions which are not at the fixed point, it is the total
energy of the system that uniquely the phase space trajectory. As a
result, trajectories can not cross each other nor merge to a fixed point.
If the total energy is negative then the particle can only orbit one of
the fixed points x, = £1. The more negative the total energy then the
more strongly bound is the particle ( x(0) =-1, »(0) =0.01, £=-0.24
is the very tight orbit shown in magenta ). For a trajectory in phase
space, both the kinetic energy and the potential energy change with
time but not the total energy. The total energy is a conserved quantity

as shown in the time evolution plots shown in figure 4.
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Fig. 4. Time evolution plots for displacement x, velocity v (y), kinetic

energy K, potential energy V and total energy E.

There is an energy barrier at x = 0 which separates the two fixed
points at x = -1 and x = +1. In figure 4, the particle is released at x(0)
= 1.1 with velocity v=0.69. The total energy of the particle is not
enough to jump the barrier at x = 0. So, the particle simply oscillates
periodically around the fixed point x. = +1. As the particle approaches

the barrier it gains kinetic energy at the expense of the potential



energy of the system with its total energy constant. From the plots you
see that the particle spends more time near the barrier than at other
locations. If the particle initially is given a bigger push its total energy
is increased and so can penetrate the barrier. For initial conditions
x(0)=1.1 and v(0) = 0.70, the total energy is positive (figure 5). The
particle now periodically orbits all three fixed points between the

limitsx =-1.1tox=1.1.
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Fig. 5. Time evolution plots. The total energy is positive and can
penetrate the barrier, thus periodically oscillating between -1.1 and
1.1.
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Fig. 6. Potential energy function and total energy levels for two
bound states and two unbound states. The total energy is not a
function of x, this total energy is the value for a trajectory specified by
its initial condition x(0), y(0). The system becomes unbounded when
the total energy is greater than the height of the barrier of the potential

energy at x = 0.

Since E(x,y) is conserved, the trajectories lie on the [1D] contours of

the energy
_ 1,2 1,2 1.4_
E(x,y)=5y" —5x" +4x =contant

Different values of the constant determine the contour (trajectory).

We can consider the cases where the total energy E(x,y) =0 (figure

7).
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Fig. 7. Saddle structure flow pattern around the fixed point (0, 0).



The Origin (0, 0) is a saddle. Examination of the flow pattern near the

Origin and you see flow lines going in and flow lines going out which

is a typical saddle structure. The orbits are called homoclinic orbits.

The are repelled from the saddle back are then drawn back to it.
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