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We can consider the motion of a particle of mass m whose motion is 

governed by a potential energy function V corresponding to a double 

potential well. The potential energy for the double well is 
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Newton’s second law can be expressed as 
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This equation can be written as a system of first order differential 

equations (m = 1) 
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A good starting point in the analysis of the system’s dynamics is to 

plot the potential energy function V(x) as shown in figure 1. The 

equilibrium positions occur when the force acting on the particle is 

zero and this means that / 0dV dx = . Thus, the equilibrium points are 

when the slope of the potential energy function is zero. Therefore, 

from figure 1 it is obvious that the three fixed points are x = -1 which 

is stable, x = +1 (stable) and x = 0 (unstable). A stable point is when 

the particle is given a small displacement from equilibrium, the force 

acting on the particle is such that the particle is attracted back to the 

equilibrium point where as for an unstable fixed point, the force 

repels the particle away from the fixed point.    

 

Fig. 1. Potential energy function V(x) with fixed points at x = -1 

(stable), x = 0 (unstable) and x = +1 (stable). 
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The equation of motion for the particle in the double well potential is 

 / 0mx dV dx+ =  

We can integrate the equation of motion with respect to time 
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This equation states that the sum of the kinetic energy K plus the 

potential energy V is a constant and independent of time. The sum of 

the kinetic energy plus the potential energy is called the total energy E 

of the system. 

 constantE K V= + =  

 

We say that the total energy is a conserved quantity and the system is 

a conservative system. 

 

Figure 2 shows the phase portrait as a streamplot. A trajectory follows 

a streamline and at any point the direction of motion is tangent to the 

streamline.   From the streamplot one can predict the motion of the 

particle given any initial condition. The particle may be bound to orbit 

around one or the other stable fixed points located at 1ex =  . 

Otherwise the orbit encompasses all three fixed points. Notice that the 

flow near the Origin xe = 0 is always repelled. 
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Fig. 2.   Phase portrait as a streamplot. A conservative system can not 

have an attracting fixed point, that is, a trajectory never converges to 

the fixed point. The fixed points (-1, 0) and (+1, 0) are centres, and 

the fixed point at the Origin (0, 0) is a saddle. 

Figure 3 shows the phase portrait plot of figure 2 but seven 

trajectories with different initial conditions are also shown. A 

summary of the initial conditions and the total energy for each 

trajectory is displayed in the Console Window: 

     x0    y0      E 

   1.10   1.10   0.37   

   1.20   0.00   -0.20   

   1.20   0.70   0.04   

   1.20   0.60   -0.02   

   -1.00   -0.65   -0.04   

   -1.00   0.10   -0.24   

   -1.80   0.10   1.01   
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Fig. 3.   Phase portrait and trajectories with different initial 

conditions. Green dots shown initial positions x(0), y(0). 

 

For all initial conditions which are not at the fixed point, it is the total 

energy of the system that uniquely the phase space trajectory. As a 

result, trajectories can not cross each other nor merge to a fixed point. 

If the total energy is negative then the particle can only orbit one of 

the fixed points 1ex =  . The more negative the total energy then the 

more strongly bound is the particle ( x(0) = -1, y(0) = 0.01, E = -0.24 

is the very tight orbit shown in magenta ).  For a trajectory in phase 

space, both the kinetic energy and the potential energy change with 

time but not the total energy. The total energy is a conserved quantity 

as shown in the time evolution plots shown in figure 4.  
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Fig. 4. Time evolution plots for displacement x, velocity v (y), kinetic 

energy K, potential energy V and total energy E. 

 

There is an energy barrier at x = 0 which separates the two fixed 

points at x = -1 and x = +1. In figure 4, the particle is released at x(0) 

= 1.1 with velocity v = 0.69. The total energy of the particle is not 

enough to jump the barrier at x = 0.  So, the particle simply oscillates 

periodically around the fixed point xe = +1. As the particle approaches 

the barrier it gains kinetic energy at the expense of the potential 
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energy of the system with its total energy constant. From the plots you 

see that the particle spends more time near the barrier than at other 

locations. If the particle initially is given a bigger push its total energy 

is increased and so can penetrate the barrier. For initial conditions 

x(0) = 1.1 and v(0) = 0.70, the total energy is positive (figure 5). The 

particle now periodically orbits all three fixed points between the 

limits x = -1.1 to x = 1.1.  

 

 

Fig. 5. Time evolution plots. The total energy is positive and can 

penetrate the barrier, thus periodically oscillating between -1.1 and 

1.1.  
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Fig. 6.  Potential energy function and total energy levels for two 

bound states and two unbound states. The total energy is not a 

function of x, this total energy is the value for a trajectory specified by 

its initial condition x(0), y(0). The system becomes unbounded when 

the total energy is greater than the height of the barrier of the potential 

energy at x = 0. 

  

Since E(x,y) is conserved, the trajectories lie on the [1D] contours of 

the energy 
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Different values of the constant determine the contour (trajectory). 

 

We can consider the cases where the total energy ( , ) 0E x y   (figure 

7).  
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x(0) = 1.1   y(0) = 0.69    E = -0.000925 

 
x(0) = 1.1   y(0) = 0.6913392799487094   E = 0 

 

 
x(0) = 1.1    y(0) = 0.70     E = 0.006025 

 

Fig. 7.  Saddle structure flow pattern around the fixed point (0, 0). 
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The Origin (0, 0) is a saddle. Examination of the flow pattern near the 

Origin and you see flow lines going in and flow lines going out which 

is a typical saddle structure. The orbits are called homoclinic orbits. 

The are repelled from the saddle back are then drawn back to it. 
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