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A damped simple pendulum is a real-world pendulum that eventually
stops swinging due to energy loss from forces like air resistance and
friction. While an ideal, frictionless pendulum would swing forever,
the damping in a real pendulum causes the amplitude of its swing to

gradually decrease over time until it comes to rest.

We will consider the simple rigid pendulum of length L that is
constrained to move along an arc of a circle centred at a pivot point.
The angular displacement w.r.t. the vertical 1s 8, the angular velocity
1S w, and the horizontal displacement is x. The mass of the pendulum
rod is taken as massless and the mass m of the system is concentrated

at the bob of the pendulum.
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The equation of motion for the simple damped pendulum is
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where g is the acceleration due to gravity, and b is the damping

coefficient.

To solve equation 1 using the Python function odeint, we need to

write this second-order equation as the system of two first-order

equations
do
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For the Python Code, the variables x and y are used where
0—>x w—y gl/Lo>w
def lorenz(t, state):
X, y = state
dx=y
dy = -b*y - w**2%*sin(x)

return [dx, dy]

For small amplitude free vibrations of the simple pendulum (zero

damping), its natural period 7y and frequency fo of vibration are
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The two fixed-point of the system occur when dw / dt =0 and

d6 /dt =0. Hence, the two fix-points of the system are

wo=0 6=0° (0,-L) stable equilibrium point

0 6=180°=rxrad (0,L)  unstable equilibrium point

()
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Fig. 1. Potential energy function V' (#) with fixed points at 8 =+x

(unstable), and € = 0 (stable).

Free motion of pendulum (zero damping b = 0)
For zero damping, there is no dissipation of energy. Therefore, it is a
conservative system and the total energy is constant. The constant Ej

is only determined by the initial conditions (6?(0),0)(0)). The sum of

the kinetic energy K plus the potential energy V' is called the total
energy E of the system.

E, =K +V = constant

Figure 2 shows the phase portrait as a streamplot. A trajectory follows
a streamline and at any point the direction of motion is tangent to the
streamline. From the streamplot one can predict the motion of the

particle given any initial condition.
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Fig. 2. Phase portrait as a streamplot. Five trajectories with different
initial conditions are shown. Note: a trajectory is uniquely determined
by its initial conditions and hence initial total energy. Hence,
trajectories can never cross. For the trajectories shown, the pendulum
simply swings back and forth for ever. Green dots shown the initial
conditions (&(0),®(0)).

We can solve the system ODE to plot the time evolution for the
angular displacement @, angular velocity 6 = w, and energies K, V
and E (figure 3) for different initial conditions (6(0),(0)). Figure 3
shows a series of plots for #(0) =7 /8 and w(0)is used as a control

parameter.

The default parameters were chosen so the natural frequency of

oscillation 1s 1.00 s
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Fig. 3A. (9(0) =7 /8,0(0)=0) Small amplitude oscillations. The

motion is simple harmonic motion and the system oscillates at its
natural frequency with period 7y = 1.00 s and total energy £ = 0.193.
Energy graph: K (red), V' (blue), E (black)
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Fig. 3B. (0(0) =7r/8,0(0)= 12) Large amplitude oscillations. The

motion is not simple harmonic motion and the system does not
oscillate at its natural frequency with period 7o = 1.00 s. The total

energy £ =4.813.

We can give the pendulum a greater push so that it can just reach the
vertical position € = £z where the potential energy is 2mglL and

kinetic energy is zero



2mgL=Lm(Lw(0))’ +mgL(1-cos(r/8)

So, the required initial angular velocity is

w(0) =12.3249
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Fig. 3C. (6?(0) =r/8,w(0)= 12.3249) Large amplitude oscillations.

The pendulum almost reaches the vertical position before it falls back
and swings to the bottom of the arc before rising again to almost
vertical. The pendulum is swinging very slowly at the top of its

motion. The total energy £ = 5.066.



When we increase the initial kinetic energy again, the pendulum no
longer swings back and forth but simply keeps rotating about the

pivot point.
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Fig. 3D. (9(0) =7r/8,0(0)= 12.33) Large amplitude oscillations.

The pendulum now passes the vertical and simply keeps rotating

around the pivot point. The total energy £ = 5.070.



The initial angular velocity is a bifurcation parameter and the

bifurcation point is @, = @(0) =12.324911326655178..
®(0) < w; = pendulum swings back to forth

@(0) > w, = pendulum rotates

Damped motion of pendulum (zero damping b = 0.80)

For the damped motion of the pendulum, system loses energy,
typically converting it into thermal energy, causing the oscillations to
decay. Energy is not conserved and we have a non-conservation

where the total energy decreases to zero.
Figure 4 shows the plots of the time evolution plots for the damped

pendulum system and figure 5 shows the vector field and the phase

space trajectories for three different initial conditions.
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Fig. 4. Time evolution plots for the damped pendulum system. Energy
is dissipated and the oscillations die away and eventually the
pendulum will come to rest at 8 = 0, the stable equilibrium point of
the system.
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Fig. 5. Vector field for the damped pendulum system and three
trajectories in phase space. All three trajectories converge to the fixed
point (0, 0).
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