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A damped simple pendulum is a real-world pendulum that eventually 

stops swinging due to energy loss from forces like air resistance and 

friction. While an ideal, frictionless pendulum would swing forever, 

the damping in a real pendulum causes the amplitude of its swing to 

gradually decrease over time until it comes to rest.  

 

We will consider the simple rigid pendulum of length L that is 

constrained to move along an arc of a circle centred at a pivot point. 

The angular displacement w.r.t. the vertical is θ, the angular velocity 

is  , and the horizontal displacement is x. The mass of the pendulum 

rod is taken as massless and the mass m of the system is concentrated 

at the bob of the pendulum. 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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The equation of motion for the simple damped pendulum is 
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where g is the acceleration due to gravity, and b is the damping 

coefficient. 

 

To solve equation 1 using the Python function odeint, we need to 

write this second-order equation as the system of two first-order 

equations 
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For the Python Code, the variables x and y are used where 

 2
/x y g L w → → →  

def lorenz(t, state):  

    x, y = state 

    dx = y 

    dy = -b*y - w**2*sin(x) 

    return [dx, dy]   

  

For small amplitude free vibrations of the simple pendulum (zero 

damping), its natural period T0 and frequency f0 of vibration are 
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The two fixed-point of the system occur when / 0d dt =  and 

/ 0d dt = . Hence, the two fix-points of the system are 

 0 =       o
0 =    (0, -L)                        stable equilibrium point 

      0 =       o
180 rad = =   (0, L)        unstable equilibrium point 
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Fig. 1. Potential energy function ( )V   with fixed points at  =   

(unstable), and 0 =  (stable). 

 

Free motion of pendulum (zero damping b = 0) 

For zero damping, there is no dissipation of energy. Therefore, it is a 

conservative system and the total energy is constant. The constant E0 

is only determined by the initial conditions ( )(0), (0)  . The sum of 

the kinetic energy K plus the potential energy V is called the total 

energy E of the system. 

 0 constantE K V= + =  

 

Figure 2 shows the phase portrait as a streamplot. A trajectory follows 

a streamline and at any point the direction of motion is tangent to the 

streamline.   From the streamplot one can predict the motion of the 

particle given any initial condition.  
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Fig. 2.   Phase portrait as a streamplot. Five trajectories with different 

initial conditions are shown. Note: a trajectory is uniquely determined 

by its initial conditions and hence initial total energy. Hence, 

trajectories can never cross. For the trajectories shown, the pendulum 

simply swings back and forth for ever. Green dots shown the initial 

conditions ( )(0), (0)  . 

 

We can solve the system ODE to plot the time evolution for the 

angular displacement  , angular velocity   , and energies K, V 

and E (figure 3) for different initial conditions ( )(0), (0)  . Figure 3 

shows a series of plots for (0) / 8 =  and (0) is used as a control 

parameter. 

 

The default parameters were chosen so the natural frequency of 

oscillation is 1.00 s 
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Fig. 3A.  ( )(0) / 8, (0) 0  = =    Small amplitude oscillations. The 

motion is simple harmonic motion and the system oscillates at its 

natural frequency with period T0 = 1.00 s and total energy E = 0.193.  

Energy graph: K (red), V  (blue), E (black) 
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Fig. 3B.  ( )(0) / 8, (0) 12  = =    Large amplitude oscillations. The 

motion is not simple harmonic motion and the system does not 

oscillate at its natural frequency with period T0 = 1.00 s. The total 

energy E = 4.813. 

  

We can give the pendulum a greater push so that it can just reach the 

vertical position  =   where the potential energy is 2mgL and 

kinetic energy is zero 
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2

2 ( (0)) (1 cos( / 8)m g L m L m g L = + −  

So, the required initial angular velocity is 

 (0) 12.3249 =  

 

Fig. 3C.  ( )(0) / 8, (0) 12.3249  = =    Large amplitude oscillations. 

The pendulum almost reaches the vertical position before it falls back 

and swings to the bottom of the arc before rising again to almost 

vertical. The pendulum is swinging very slowly at the top of its 

motion. The total energy E = 5.066.  
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When we increase the initial kinetic energy again, the pendulum no 

longer swings back and forth but simply keeps rotating about the 

pivot point. 

 

Fig. 3D.  ( )(0) / 8, (0) 12.33  = =    Large amplitude oscillations. 

The pendulum now passes the vertical and simply keeps rotating 

around the pivot point. The total energy E = 5.070. 
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The initial angular velocity is a bifurcation parameter and the 

bifurcation point  is (0) 12.324911326655178B = = .   

 (0) B   pendulum swings back to forth 

 (0) B   pendulum rotates 

 

Damped motion of pendulum (zero damping b = 0.80) 

For the damped motion of the pendulum, system loses energy, 

typically converting it into thermal energy, causing the oscillations to 

decay. Energy is not conserved and we have a non-conservation 

where the total energy decreases to zero. 

 

Figure 4 shows the plots of the time evolution plots for the damped 

pendulum system and figure 5 shows the vector field and the phase 

space trajectories for three different initial conditions. 
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Fig. 4. Time evolution plots for the damped pendulum system. Energy 

is dissipated and the oscillations die away and eventually the 

pendulum will come to rest at 0 = , the stable equilibrium point of 

the system. 
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Fig. 5.   Vector field for the damped pendulum system and three 

trajectories in phase space. All three trajectories converge to the fixed 

point (0, 0).  
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