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LIMIT CYCLE 

A limit cycle is a closed trajectory in a nonlinear dynamical system's 

phase space where nearby trajectories either spiral into it (stable limit 

cycle) or spiral out of it (unstable limit cycle). Unlike linear 

oscillations, the amplitude and frequency of a limit cycle are constant 

and independent of initial conditions, and it is a characteristic 

behaviour of nonlinear systems. A common example is the Van der 

Pol oscillator, which was discovered in electrical circuits and is used 

to model phenomena like nerve cell action potentials 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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Examples and applications: 

• Electrical circuits 

• Predator-prey models  

• Modelling the periodic firing of neurons (action potentials) and 

other biological rhythms.  

• The periodic motion of mechanical devices (clock's escapement 

mechanism) which rely on limit cycles to maintain a constant 

amplitude of oscillation. 

 

Van der Pol Oscillator 

The Van der Pol oscillator is a self-sustained, nonlinear oscillator 

known for its nonlinear damping and it oscillates without an external 

force due to its nonlinear damping. At small amplitudes, it gains 

energy (like a negative damping), while at large amplitudes, it 

dissipates energy. The oscillator's trajectory in phase space eventually 

converges to a closed loop, which represents its stable, periodic 

oscillation. Its behaviour can be described by a second-order 

differential equation and it exhibits a limit cycle, meaning it will 

eventually settle into a stable oscillation. The second-order non-linear 

autonomous differential equation 

        (1)        ( ) ( )2
1 cos 2 / 0INx x x x A t T  = − + − +    
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is called the Van der Pol equation. This form of the van der Pol 

equation includes a periodic forcing term and results in deterministic 

chaotic motion. The Van der Pol equation describes many physical 

systems. The parameter   is a positive scalar indicating the 

nonlinearity and the strength of the damping. The sign of the damping 

term in equation 1 is dependent upon the sign of the term ( )2
1 x− . 

The equation models a non-conservative system in which energy is 

added to ( )1x   and subtracted from  ( )1x   the system, resulting 

in a periodic motion called a limit cycle. Hence, energy is dissipated 

at high amplitudes and generated at low amplitudes. As a result, there 

exists oscillations around a state at which energy generation and 

dissipation balance. 

 

To solve the Van der Pol equation using the Python function odeint, 

equation 1 needs to be expressed as two first order differential 

equation. 
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 (2)         
( )2
1

x y

y x x y

=

= − + −




 

 

The results of solving equation 2 show that for every initial condition 

(except x = 0, x = 0), approaches a unique periodic motion. The 

nature of this limit cycle is dependent on the value of  . The limit 

cycle is a closed curve enclosing the Origin in the x-y phase plane. 

The limit cycle is also symmetrical about the Origin. When 

0, 0A = =  the motion is simple harmonic motion. For small values 

of   the motion is nearly sinusoidal, whereas for large values of   it 

is a relaxation oscillation, meaning that it tends to resemble a series of 

step functions, jumping between positive and negative values twice 

per cycle. 
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SIMULATIONS 

The variable x could represent many different physical quantities such 

as voltage, current, displacement and the y variable is the time rate of 

change of x. For the simulations, to make it less abstract, we can take 

x to be the displacement and y to be the velocity v of a particle. 

 

Free motion (simple harmonic motion)     0 =  

 

Fig. 1.1.   0 =    The motion of the particle is simple harmonic 

motion (SHM) for to initial conditions. The period is T = 6.28 and is 

the same for all initial conditions, excluding the Origin.  
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Fig. 1.2.  0 =    Phase portrait as a quiver plot showing the flow of 

the system. The Origin (0, 0) is an unstable fixed point. The orbital 

period is T = 6.28 and the same for all initial conditions. So, the larger 

orbit must have an average velocity greater the smaller orbit 

trajectory. The orbits are purely elliptical. 

 

 

Fig. 1.3.  0 =    Phase portrait as a streamplot showing the flow of 

the system. The Origin (0, 0) is an unstable fixed point. 
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For the case when the damping coefficient is zero, 0 = , the motion 

is simple harmonic motion and the phase space orbital period is a 

constant, T = 6.28. The period T is independent of the initial 

conditions or the phase space trajectory.  

 

 

Weak nonlinear damping      0.1=   

For weak nonlinear damping, the value of the damping coefficient   

is small and all trajectories are attracted towards a stable limit cycle. 

If the initial x0 value is small then the orbit it is pushed out to the limit 

cycle and if x0 is large then the orbit is pulled into the limit cycle. The 

oscillations are symmetrical about the Origin.  

 

Fig. 2.1.   Trajectory pulled into limit cycle. The orbital period is T = 

6.28. The amplitude of the oscillation decreases to its steady-state 

amplitude xSS. 
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Fig. 2.2.   Trajectory pushed out to limit cycle. The amplitude grows 

to its steady-state value xSS. 

 

Fig. 2.3. The orbit spirals outward to the limit cycle.  
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Fig. 2.4.  The orbit spirals inward to the limit cycle. 

 

 

Fig. 2.5. The orbit spirals outward to the limit cycle.  
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Fig. 2.6. The orbit spirals inward to the limit cycle.  

 

For 0 1   the phase space is a small distortion of the phase space 

of the harmonic oscillator and there is still an elliptical behaviour 

of the orbits.  

 

 

Moderate nonlinear damping   2.0=   

For moderate nonlinear damping all trajectories are attracted towards 

a stable limit cycle but the shape of the decaying orbit is no longer 

“elliptical” in shape. Again, if the initial x0 value is small then the 

orbit it is pushed out to the limit cycle and if x0 is large then the orbit 

is pulled into the limit cycle. The oscillations are symmetrical about 

the Origin.  
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Fig. 3.1.   Trajectory pulled into limit cycle. The motion is periodic 

but not SHM. The orbital period is greater than the free oscillations,  

T = 7.63. 

 

Fig. 3.2.   A trajectory is attracted to the limit cycle. 
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Fig. 3.3.  All trajectories with different initial conditions are drawn 

into the limit cycle. 

 

Strong nonlinear damping   10.0=  

For strong nonlinear damping where 1   the system behaves as a 

relaxation oscillator (system response is a non-sinusoidal repetitive 

output signal). 

 

Fig. 4.1.  Time evolution plots. 
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Fig. 4.2.  All final trajectories merge to the limit cycle. The limit cycle 

for 1   is elongated and the period becomes large T ~ 20. 

 

 

Figure 5 show a series of phase portraits for different values of the 

damping coefficient  .  The amplitude of the displacement x 

( )2SSx   is constant for all values of  . Increasing the value of   

increases the velocity amplitude and increases the period of 

oscillation. 
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Fig. 5.  Orbits for different values of the damping coefficient  . 
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The motion with strong nonlinear damping is divided into two time 

scales 

 Fast time scale: rapid transitions 2 2 2 2x − →+ + →−  

 Slow time scale:  ~ 2 ~ 2x x −     T > 20 time units    

 

A Van der Pol oscillator is one in which all initial conditions 

converged to the same periodic orbit of finite amplitude.  This 

dynamical system has a unique stable limit cycle where there is a 

unique periodic solution and all nearby solutions tend towards this 

periodic solution as t → . 

 

When |x| >> 1 both the restoring and damping forces are large, 

so that |x(t)| will decrease with time. The system behaves like a 

strongly damped oscillator and it disperses energy. However, when  

|x| << 1 the damping force becomes negative, which makes |x(t)| 

increase with time and the energy of the system grows. 

 

The Python Code ds2100.py can easy be modified to include the 

forcing term.  
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