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LIMIT CYCLE

A limit cycle is a closed trajectory in a nonlinear dynamical system's
phase space where nearby trajectories either spiral into it (stable limit
cycle) or spiral out of it (unstable limit cycle). Unlike linear
oscillations, the amplitude and frequency of a limit cycle are constant
and independent of initial conditions, and it is a characteristic
behaviour of nonlinear systems. A common example is the Van der
Pol oscillator, which was discovered in electrical circuits and 1s used

to model phenomena like nerve cell action potentials
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Examples and applications:
e Electrical circuits
e Predator-prey models
e  Modelling the periodic firing of neurons (action potentials) and
other biological rhythms.
e The periodic motion of mechanical devices (clock's escapement
mechanism) which rely on limit cycles to maintain a constant

amplitude of oscillation.

Van der Pol Oscillator

The Van der Pol oscillator is a self-sustained, nonlinear oscillator
known for its nonlinear damping and it oscillates without an external
force due to its nonlinear damping. At small amplitudes, it gains
energy (like a negative damping), while at large amplitudes, it
dissipates energy. The oscillator's trajectory in phase space eventually
converges to a closed loop, which represents its stable, periodic
oscillation. Its behaviour can be described by a second-order
differential equation and it exhibits a limit cycle, meaning it will
eventually settle into a stable oscillation. The second-order non-linear

autonomous differential equation
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is called the Van der Pol equation. This form of the van der Pol
equation includes a periodic forcing term and results in deterministic
chaotic motion. The Van der Pol equation describes many physical

systems. The parameter 4 is a positive scalar indicating the

nonlinearity and the strength of the damping. The sign of the damping

term in equation 1 is dependent upon the sign of the term (1 —x* ) .

The equation models a non-conservative system in which energy is

added to (|x| < 1) and subtracted from (|x| > 1) the system, resulting

in a periodic motion called a limit cycle. Hence, energy is dissipated
at high amplitudes and generated at low amplitudes. As a result, there
exists oscillations around a state at which energy generation and

dissipation balance.

To solve the Van der Pol equation using the Python function odeint,
equation 1 needs to be expressed as two first order differential

equation.
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The results of solving equation 2 show that for every initial condition
(except x =0, x = 0), approaches a unique periodic motion. The
nature of this limit cycle is dependent on the value of . The limit
cycle is a closed curve enclosing the Origin in the x-y phase plane.
The limit cycle is also symmetrical about the Origin. When

1 =0, A=0 the motion is simple harmonic motion. For small values
of u the motion is nearly sinusoidal, whereas for large values of x it

is a relaxation oscillation, meaning that it tends to resemble a series of
step functions, jJumping between positive and negative values twice

per cycle.



SIMULATIONS

The variable x could represent many different physical quantities such
as voltage, current, displacement and the y variable is the time rate of
change of x. For the simulations, to make it less abstract, we can take

x to be the displacement and y to be the velocity v of a particle.

Free motion (simple harmonic motion) 4 =0
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Fig. 1.1. x4 =0 The motion of the particle is simple harmonic

motion (SHM) for to initial conditions. The period is 7= 6.28 and is
the same for all initial conditions, excluding the Origin.



Fig. 1.2. x4 =0 Phase portrait as a quiver plot showing the flow of
the system. The Origin (0, 0) is an unstable fixed point. The orbital
period is 7= 6.28 and the same for all initial conditions. So, the larger
orbit must have an average velocity greater the smaller orbit
trajectory. The orbits are purely elliptical.

Fig. 1.3. x4 =0 Phase portrait as a streamplot showing the flow of
the system. The Origin (0, 0) 1s an unstable fixed point.



For the case when the damping coefficient is zero, =0, the motion

is simple harmonic motion and the phase space orbital period is a
constant, 7= 6.28. The period T is independent of the initial

conditions or the phase space trajectory.

Weak nonlinear damping  4=0.1

For weak nonlinear damping, the value of the damping coefficient u
is small and all trajectories are attracted towards a stable limit cycle.
If the initial xo value is small then the orbit it is pushed out to the limit
cycle and if xp is large then the orbit is pulled into the limit cycle. The

oscillations are symmetrical about the Origin.
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Fig. 2.1. Trajectory pulled into limit cycle. The orbital period is 7=
6.28. The amplitude of the oscillation decreases to its steady-state

amplitude xss.
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Fig. 2.2. Trajectory pushed out to limit cycle. The amplitude grows

to its steady-state value xss.

Fig. 2.3. The orbit spirals outward to the limit cycle.



Fig. 2.5. The orbit spirals outward to the limit cycle.



Fig. 2.6. The orbit spirals inward to the limit cycle.

For 0 < i <1 the phase space is a small distortion of the phase space

of the harmonic oscillator and there is still an elliptical behaviour

of the orbits.

Moderate nonlinear damping 1=2.0

For moderate nonlinear damping all trajectories are attracted towards
a stable limit cycle but the shape of the decaying orbit is no longer
“elliptical” in shape. Again, if the initial xo value is small then the
orbit it is pushed out to the limit cycle and if xo 1s large then the orbit
is pulled into the limit cycle. The oscillations are symmetrical about

the Origin.
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Fig. 3.1. Trajectory pulled into limit cycle. The motion is periodic

but not SHM. The orbital period is greater than the free oscillations,

T'=17.63.

Fig. 3.2. A trajectory is attracted to the limit cycle.
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u=2.00

Fig. 3.3. All trajectories with different initial conditions are drawn
into the limit cycle.

Strong nonlinear damping #=10.0

For strong nonlinear damping where x> 1 the system behaves as a

relaxation oscillator (system response is a non-sinusoidal repetitive

output signal).
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Fig. 4.1. Time evolution plots.
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Fig. 4.2. All final trajectories merge to the limit cycle. The limit cycle

for 12> 1 is elongated and the period becomes large 7"~ 20.

Figure 5 show a series of phase portraits for different values of the

damping coefficient 4. The amplitude of the displacement x
(xgs = 2) is constant for all values of x. Increasing the value of u

increases the velocity amplitude and increases the period of

oscillation.
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Fig. 5. Orbits for different values of the damping coefficient s .




The motion with strong nonlinear damping is divided into two time
scales

Fast time scale: rapid transitions x —2 —>+2 +2—>-2

Slow time scale;: x~2 x~-2 T> 20 time units

A Van der Pol oscillator is one in which all initial conditions
converged to the same periodic orbit of finite amplitude. This
dynamical system has a unique stable limit cycle where there is a
unique periodic solution and all nearby solutions tend towards this

periodic solution as ¢ — oo.

When [x| >> 1 both the restoring and damping forces are large,

so that |x(¢)| will decrease with time. The system behaves like a
strongly damped oscillator and it disperses energy. However, when
Ix] <<'1 the damping force becomes negative, which makes |x()|

increase with time and the energy of the system grows.

The Python Code ds2100.py can easy be modified to include the

forcing term.
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