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A saddle node bifurcation in planar systems occurs when fixed points
are created or destroyed as a parameter changes. This is a
fundamental type of bifurcation (fold, blue-sky, tangent, or limit point
bifurcation) that happens when the system's dynamics change
qualitatively at a specific parameter value. In a planar system, this
bifurcation is visualized when the nullclines of the system become
tangent to each other leading to the collision and annihilation or

creation of these fixed points.
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As a parameter crosses a critical value, two fixed points can emerge
from nowhere or collide and disappear. For a slight change in the

parameter value, the system's overall behaviour changes significantly.

Example

Consider the [2D] system

2
X

X=—ax+y y= —by a,b>0

1+ x?

This system was proposed by Griffth in 1971 as a model for genetic
control where x is the concentration of a gene protein and y a

concentration of mRNA.
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The Origin (0, 0) is always a fixed point.

Other fixed points (x., y.) can be found from the intersection of the

two nullclines
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Take b as a constant and a as the bifurcation parameter:

a<1/(2b) two extra fixed points (3 fixed points)
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a>1/(2b) Origin is the only fixed point (1 fixed point)

Finding the eigenvalues of the Jacobian matrix can help determine the
stability of the fixed points.
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For the fixed point at the Origin (0, 0), the eigenvalues are (-a, -b) and
since a > 0, and b > 0, the eigenvalues are both negative. Hence, the

Origin (0, 0) 1s always a stable fixed point.

For other fixed points, the eigenvalues can be computed using the

Python function eig.

SIMULATIONS

For all simulation b =1 and a is the bifurcation parameter with a
critical value a. = 0.50. Figure 1 shows a bifurcation diagram for the

fixed points (x, ye) as a function of the bifurcation parameter a.
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Fig. 1. Bifurcation diagram. The blue curves are stable fixed points
and the red curves are for saddle nodes. a < a. there are three fixed
points and for a > a. there is only one fixed point.



Depending on the value of the bifurcation parameter a, there are
either one, two or three fixed points. The Origin (0, 0) is always a
stable fixed point. At the bifurcation point, a. = 0.50 there are two
fixed points. There is a change in the number of fixed points and

changes in stability as the value of a crosses the critical value a..

a=0.6>a.=0.5

Figure 2 shows the time evolution of x and y and the phase portraits as
a quiver plot and a streamplot (blue line is the x nullcline, the red line
is the y nullcline and the green line the trajectory). There is only one
fixed point, the Origin (0, 0) which is stable. The eigenvalues

(displayed in the Console Window) of the Jacobian matrix are

A, =-0.60 4, =-1.00 = stable node
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Fig.2. a=0.6>a.=0.5



a=05=a,

When the value of a decreases from 0.60 to 0.050 there is a creation
of another fixed point. The two fixed points are the Origin (0, 0)
which is stable and (1.00, 0.50) which is also stable and its

eigenvalues are

A4 =0 A4, =-1.50 = ?node

A dynamical system with one zero eigenvalue and one negative
eigenvalue is non-hyperbolic and marginally stable, meaning it is
stable but not asymptotically stable. As the zero eigenvalue means the
stability of the equilibrium cannot be determined from the eigenvalues
alone. By examination of trajectories in the phase portrait, we can
conclude that (1.00, 0.50) is a stable fixed point. As shown in figure
3, depending upon the initial conditions, the trajectory is attracted to

the fixed point (0, 0) or the fixed point (1.00, 0.50).
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Fig. 3. a = 0.5 = a. Depending upon the initial conditions, the
trajectory is attracted to the fixed point (0, 0) or the fixed point ((1.00,
0.50).



a=0.45<a.=0.50
There are three fixed points
(0,0) stable
(0.63,0.28) 4, =0.13 A, =-1.58 = saddle node

(1.60,0.72) A4, =-0.15 4, =-1.30 = stable
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Fig. 4A. x(0)=0.16, 1(0) = 0.80
x(0) = 0.15, 1(0) = 0.80
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Fig. 4B. The fixed point (0.63, 0.28) is a saddle node while the other
two fixed points (0, 0) and (1.60, 0.72) are stable nodes. The
streamplot clearly shows the saddle node: far from the saddle, the

trajectory is attracted, but close to the saddle the trajectory is repelled.
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