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A saddle node bifurcation in planar systems occurs when fixed points 

are created or destroyed as a parameter changes. This is a 

fundamental type of bifurcation (fold, blue-sky, tangent, or limit point 

bifurcation) that happens when the system's dynamics change 

qualitatively at a specific parameter value. In a planar system, this 

bifurcation is visualized when the nullclines of the system become 

tangent to each other leading to the collision and annihilation or 

creation of these fixed points.  

 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDS/ds25Home.htm
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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As a parameter crosses a critical value, two fixed points can emerge 

from nowhere or collide and disappear. For a slight change in the 

parameter value, the system's overall behaviour changes significantly. 

 

Example 

Consider the [2D] system 
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This system was proposed by Griffth in 1971 as a model for genetic 

control where x is the concentration of a gene protein and y a 

concentration of mRNA. 
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The Origin (0, 0) is always a fixed point. 

Other fixed points (xe, ye) can be found from the intersection of the 

two nullclines 
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Take b as a constant and a as the bifurcation parameter: 

1/ (2 )a b     two extra fixed points (3 fixed points) 
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 1 / (2 ) ca b a= =       ac critical value of the bifurcation parameter 

                                       one extra fixed point (2 fixed points) 

    
1 1

2 2
e ex y

ab b
= =  

 1/ (2 )a b         Origin is the only fixed point (1 fixed point) 

   

Finding the eigenvalues of the Jacobian matrix can help determine the 

stability of the fixed points. 
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For the fixed point at the Origin (0, 0), the eigenvalues are (-a, -b) and 

since a > 0, and b > 0, the eigenvalues are both negative. Hence, the 

Origin (0, 0) is always a stable fixed point. 

 

For other fixed points, the eigenvalues can be computed using the 

Python function eig. 

 

SIMULATIONS 

For all simulation b = 1 and a is the bifurcation parameter with a 

critical value ac = 0.50.  Figure 1 shows a bifurcation diagram for the 

fixed points (xe, ye) as a function of the bifurcation parameter a.  

 

 

Fig. 1.  Bifurcation diagram. The blue curves are stable fixed points 

and the red curves are for saddle nodes. a < ac there are three fixed 

points and for a > ac there is only one fixed point. 
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Depending on the value of the bifurcation parameter a, there are 

either one, two or three fixed points. The Origin (0, 0) is always a 

stable fixed point. At the bifurcation point, ac = 0.50 there are two 

fixed points. There is a change in the number of fixed points and 

changes in stability as the value of a crosses the critical value ac. 

 

 

a = 0.6 > ac = 0.5 

Figure 2 shows the time evolution of x and y and the phase portraits as 

a quiver plot and a streamplot (blue line is the x nullcline, the red line 

is the y nullcline and the green line the trajectory). There is only one 

fixed point, the Origin (0, 0) which is stable. The eigenvalues 

(displayed in the Console Window) of the Jacobian matrix are 

 1 20.60 1.0 establ0 e nod = − = −   
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Fig. 2.   a = 0.6 > ac = 0.5 
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a = 0.5 = ac  

When the value of a decreases from 0.60 to 0.050 there is a creation 

of another fixed point. The two fixed points are the Origin (0, 0) 

which is stable and (1.00, 0.50) which is also stable and its 

eigenvalues are 

 

 1 2 e0 1. o50 ? n d = = −   

 

A dynamical system with one zero eigenvalue and one negative 

eigenvalue is non-hyperbolic and marginally stable, meaning it is 

stable but not asymptotically stable. As the zero eigenvalue means the 

stability of the equilibrium cannot be determined from the eigenvalues 

alone. By examination of trajectories in the phase portrait, we can 

conclude that (1.00, 0.50) is a stable fixed point. As shown in figure 

3, depending upon the initial conditions, the trajectory is attracted to 

the fixed point (0, 0) or the fixed point (1.00, 0.50). 
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Fig. 3.  a = 0.5 = ac   Depending upon the initial conditions, the 

trajectory is attracted to the fixed point (0, 0) or the fixed point ((1.00, 

0.50). 
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a = 0.45 < ac = 0.50 

There are three fixed points 

 (0, 0)   stable 

 (0.63, 0.28)   1 20.13 1.58 = = −  saddle node 

 (1.60, 0.72)    1 20.15 1.30 = − = −    stable  

 

 

 

 Fig. 4A.  x(0) = 0.16,  y(0) = 0.80   

                x(0) = 0.15,  y(0) = 0.80   
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Fig. 4B.   The fixed point (0.63, 0.28) is a saddle node while the other 

two fixed points (0, 0) and (1.60, 0.72) are stable nodes. The 

streamplot clearly shows the saddle node: far from the saddle, the 

trajectory is attracted, but close to the saddle the trajectory is repelled.  
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