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A pitchfork bifurcation in a planar system occurs when a small
change in a parameter causes a single stable equilibrium point to split
into two new stable equilibrium points, or vice versa, with the original
point becoming unstable. This phenomenon is named for its
characteristic "pitchfork" shape in a bifurcation diagram, where the
stable branches split from the original point. Planar systems can
exhibit both supercritical pitchfork bifurcations (where the split
creates new stable points from a stable parent) and subcritical
pitchfork bifurcations (where the split creates new unstable points
from an unstable parent), often arising in systems with an odd

symmetry.
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Consider the dynamical system
(1) x=—-ax+y+sin(x) y=x-—y

where a is the bifurcation parameter.

y nullcline

2) y=0 y=x

x nullcline

x=0 ax+y+sin(x)=0

3)

x(a + 1) +sin(x) =0

The Origin (0, 0) is always a fixed point.

Other fixed points (xz, ye) can be found from the intersection of the

two nullclines.

Let
F(x)= x(a + 1) + sin(x)
then

(4) F(xE):xE(a+1)+sin(xE)=O Vi =Xg

The fixed points (xz, ye) are found by solving equation 4. This
equation for finding the fixed points is more complicated than it

looks. The number of fixed points is highly dependent upon the value



of the bifurcation parameter a and the range of x values as shown in

figure 1.
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Fig. 1A. a=-1= F(x)=sin(x) F(x;)=0 sin(x;)=0

There is an infinite number of fixed points. The Origin is unstable.
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Fig. 1B.
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The Origin is the only fixed point and is unstable.



a =-1.50
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Fig. 1IC. a=-1.5 The are three fixed points.
(0, 0) unstable
(-1.90,-1.90) stable
(+1.90, +1.90) stable
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Fig. ID. a=-2.0  There is one fixed point.
(0, 0) stable



a =-2.50

Fig. IE. a=-2.5  There is one fixed point.

(0, 0) stable
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Fig. IF. a=-1.95 The are three fixed points.
(0, 0) unstable
(- 0.55,-0.55) stable
(+0.55,+0.55) stable

To understand the pitchfork bifurcation using the Python Code
ds2501.py, the bifurcation parameter a is restricted to the range -3 to

+2 and the x range to -2 to +2.



Finding the eigenvalues of the Jacobian matrix can help determine the
stability of the fixed points.
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The Origin (0, 0) is always a fixed point and the dependence of the

Origin’s eigenvalues is shown in figure 2.

Fig. 2. The red and blue curves give the values for the two

eigenvalues. The critical value of the bifurcation parameter is ac = -2.

For a < -2, both eigenvalues are negative. Hence, the Origin (0, 0) is a
stable fixed point. A dynamical system with one positive and one
negative eigenvalue is an unstable saddle point. Trajectories will
diverge along the eigenvector associated with the positive eigenvalue

and converge along the eigenvector associated with the negative



eigenvalue. The system is unstable because any small perturbation in
the direction of the positive eigenvalue will cause the state to move

away from the origin. Therefore, when a > -2, the Origin is an

unstable saddle.

Figure 3 shows a series of plots when the fixed point at the Origin
(0, 0) 1s stable (a < ac = -2) and all trajectories are attracted to it. The

nullclines only intersect at (0, 0) and so the Origin is the only fixed

point of the system
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a=-250 ac=-2.00

Fig. 3. a=-2.50 <a.=-2.00. In the phase portraits, the blue line is

the x nullcline and the red line is the y nullcline.

Figure 4 shows the pitchfork bifurcation behaviour occurring when
a>a.=-2.00. For a =-1.60 > a., the Origin becomes a saddle node

and two stable nodes are created.

a=-1.60 ac=-2.00

Fig. 4A. The phase portrait shows that there are three fixed point and
the streamlines shown their stability: (0, 0) saddle node; (-1.66, -166)
stable node; (+1.66, +1.66) stable node.
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Fig. 4B. Time evolution of a trajectory which is attracted to the

stable fixed point (+1.66, +1.66).

The eigenvalues of the Jacobin matrix evaluated at the fixed points
can be calculated using the Python function eig and the results

displayed in the Console Window:

(-1.66,-166) eigenvalues [-3.121-0.529] stable
(+1.66,+166) eigenvalues [-2.402 -0.287] stable

This system is an example of a supercritical pitchfork bifurcation.
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