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INTRODUCTION 

Population growth models describe how the size of a population 

changes over time. The two fundamental models are exponential 

growth, which shows a population growing at an ever-increasing rate 

with unlimited resources, and the logistic model, a more realistic 

model where growth slows and levels off at the environment's 

carrying capacity, K due to resource limitations.  
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In this article we look at an extended logistic model for insect 

outbreak and study the bifurcations and demonstrate that a saddle-

node bifurcation takes place.  

 

 

 

 

The logistic model describes population growth that slows as it 

approaches a carrying capacity K, the maximum population size an 

environment can sustain. Unlike exponential growth which shows 

unlimited J-shaped growth, logistic growth produces an S-shaped 

curve because limited resources create density-dependent factors (like 

reduced birth rates and increased death rates) that restrict growth as 

the population size N increases. The population eventually plateaus at 

the carrying capacity K, creating a realistic model of population 

dynamics limited by environmental constraints. 
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The Logistic Equation 

The growth rate of the population in the logistic model is described by 

the ODE 

 (1) 1
dN N

N r N
dt K

 
= = − 

 
 

 

N  is the rate of change of the population N with respect to time t 

r is the growth rate 

N is the population size 

K is the carrying capacity 

 

We can introduce the concept of predation into our population 

dynamics.  Predation influences the rate of change of a population 

where predators decrease prey numbers and, in turn, their own 

populations are affected by prey availability. 

 (2)          1
N

N r N P
K

 
= − − 

 
 

where P(N) is the predation term. For example, N is the number of 

insects and P(N) is the rate at which birds eat the insects. We will use 

the function given by equation 3 for the predation 

 (3)           
2

2 2

B N
P

A N
=

+
 

Where A and B are constants. Combining equations 1 and 3 we obtain 

the ODE for the dynamics of the insect population 
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 (4)           
2

2 2
1

N B N
N r N

K A N

 
= − − 

+ 
 

 

The model governed by equation 4 is a poor one, since there is no 

dependence on the bird population or any term for the interaction 

between insect and bird numbers. As a consequence, the initial 

population can be zero (extinction) or reach an equilibrium state 

 (0) 0 or (0) 0eN N N→ →   

 

In Jason’s video equation 4 is expressed in a dimensionless 

formulation which reduces the number of constants from 4 to 2. 

However, this is not necessary when you can solve the ODE 

numerically. So, the Python Code ds25L10.py solves equation 4 

where you need to input the values for the constants r, K, A and B. 

 

The fixed points Ne (equilibrium populations) of the system are 

determined from equation 4 when 0N = .  

 (5)           
2

2 2
1 0

N B N
r N

K A N

 
− − = 

+ 
       

 

It is obvious that Ne = 0 is one fixed point. The other fixed points are 

found graphically by plotting N vs N and determining the zero 

crossing of the function.  
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 x = linspace(0,1.1*K,num) 

 xDot = r*x*(1 - x/K) - B*x**2/(A**2 + x**2) 

 # Find zeros in Ndot 

 Q = np.zeros(2); p = 0 

 for c in range(num-2): 

     q = xDot[c]*xDot[c+1] 

     if q <= 0: 

        Q[p] = c 

        p = int(p+1)      

 QI = Q.astype(int) 

 xZ = x[QI]          # Zeros for xDot   

 

The constants r, A and B are bifurcation parameters. The number of 

fixed points depends upon the values of r, A and B and bifurcations 

occur at critical values of r, A and B. 

 

Zero population N = 0 means that the population is extinct and there 

can be no growth in the population. However, for a very small 

population, the fixed point  Ne = 0  may be stable or unstable 

depending on the values of r, A and B.  

 

The condition for the fixed points is given by equation 5, which can 

be expressed ( )0eN  as 
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 (6)          

2 2

1 2 1 22 2

1

1

e e

e

e e

e

N B N
r

K A N

N B N
y r y y y

K A N

 
− = 

+ 

 
= − = = 

+ 

 

 

So, when plotted, the intersection of the two functions y1 and y2 give 

the values for the fixed points when 0eN  . 

 

For the simulations shown below the values of r, K and B are kept 

constant. The constant A is varied and is the bifurcation parameter for 

the simulations.  
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SIMULATIONS 

Simulation 1   r = 1.5   K = 1.0    A = 0.100   B = 0.300 

                          4 fixed points    

 

Fig. 1A.  Predation curve (equation 3). 

 

Fig. 1B.  Equation 6 plots. 
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Fig. 1C. Equation 4 plot. There are four fixed points for 

 A = 0.100 and B = 0.300.  

 xe = 0                unstable  (positive slope) 

 xe = 0.0681       stable      (negative slope) 

 xe = 0.1996       unstable  (positive slope) 

     xe =  0.7311      stable      (negative slope)  

 

 

Fig 1D.  Population trajectories. For different initial 

conditions, all trajectories converge to a stable fixed point. 
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There are two stable fixed points. 

If xe = 0.7311 there is an outbreak 

in the insect population. But if xe = 

0.681 there is no outbreak and we 

have only a small insect 

population. Whether there is an 

outbreak in the insect population 

depends upon the initial number of 

insects. 

 

Fig. 1E. Vector field quiver plot and insect population 

trajectories. The trajectories are repelled from an unstable 

fixed point and attracted to a stable fixed point. 
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Fig. 1F. Vector field streamplot plot and insect population 

trajectories. The “flow” is away from an unstable fixed point 

and towards a stable fixed point.  

 

 

 

Simulation 2   r = 1.5   K = 1.0    A = 0.114   B = 0.300 

                          3 fixed points    
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Fig. 2A.  Predation curve (equation 3). 

 

Fig. 2B.  Equation 6 plots.  

 

 

Fig. 2C. Equation 4 plot. There are four fixed points for A = 

0.100 and B = 0.300.  

 xe = 0                unstable          (positive slope) 

 xe ~ 0.13           semi-stable      (negative / positive slope) 

  xe =  0.7335      stable             (negative slope)  
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Fig 2D.  Population trajectories. For different initial 

conditions, all trajectories converge to a stable fixed point. 

 

 

Fig. 2E. Vector field quiver plot and insect population 

trajectories. The trajectories are repelled from an unstable 

fixed point to a stable fixed point. 
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Fig. 2F. Vector field streamplot plot and insect population 

trajectories. The “flow” is away from an unstable fixed point 

and towards a stable fixed point. a stable fixed point. 
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Simulation 3   r = 1.5   K = 1.0    A = 0.118   B = 0.300 

                          2 fixed points    

 

 

Fig. 3A.  Predation curve (equation 3). 

 

Fig. 3B.  Equation 6 plots. 
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Fig. 3C. Equation 4 plot. There are four fixed points for A = 

0.100 and B = 0.300.  

 xe = 0                unstable  (positive slope) 

 xe = 0.7343       stable      (negative slope) 

   

 

Fig 3D.  Population trajectories. For different initial 

conditions, all trajectories converge to a stable fixed point. 
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Fig. 3E. Vector field quiver plot and insect population 

trajectories. The trajectories are repelled from an unstable 

fixed point to a stable fixed point. 

 

 

Fig. 3F. Vector field streamplot plot and insect population 

trajectories. The “flow” is away from an unstable fixed point 

and towards a stable fixed point. a stable fixed point. 
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The critical value of the bifurcation parameter A is 

 

0.114

4 fixed points

3 fixed points

2 fixed points
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Not counting the fixed point Ne = 0 as A is varied there are two saddle 

node bifurcation. 

 

 

  

 

 


