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INTRODUCTION

Population growth models describe how the size of a population
changes over time. The two fundamental models are exponential
growth, which shows a population growing at an ever-increasing rate
with unlimited resources, and the logistic model, a more realistic
model where growth slows and levels off at the environment's

carrying capacity, K due to resource limitations.
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In this article we look at an extended logistic model for insect
outbreak and study the bifurcations and demonstrate that a saddle-

node bifurcation takes place.

The logistic model describes population growth that slows as it
approaches a carrying capacity K, the maximum population size an
environment can sustain. Unlike exponential growth which shows
unlimited J-shaped growth, logistic growth produces an S-shaped
curve because limited resources create density-dependent factors (like
reduced birth rates and increased death rates) that restrict growth as
the population size N increases. The population eventually plateaus at
the carrying capacity K, creating a realistic model of population

dynamics limited by environmental constraints.



The Logistic Equation
The growth rate of the population in the logistic model is described by
the ODE

(1) d—NzNer{pﬁj
dt

N is the rate of change of the population N with respect to time ¢
r 1s the growth rate
N is the population size

K is the carrying capacity

We can introduce the concept of predation into our population
dynamics. Predation influences the rate of change of a population
where predators decrease prey numbers and, in turn, their own

populations are affected by prey availability.
2) Nerﬁl—Ej—P
K

where P(N) is the predation term. For example, N is the number of
insects and P(N) is the rate at which birds eat the insects. We will use
the function given by equation 3 for the predation
BN’
3 P=———
G) A+ N°
Where A and B are constants. Combining equations 1 and 3 we obtain

the ODE for the dynamics of the insect population



The model governed by equation 4 is a poor one, since there is no
dependence on the bird population or any term for the interaction
between insect and bird numbers. As a consequence, the initial
population can be zero (extinction) or reach an equilibrium state

N(@©)—>0 or N()—>N,#0

In Jason’s video equation 4 is expressed in a dimensionless
formulation which reduces the number of constants from 4 to 2.
However, this is not necessary when you can solve the ODE

numerically. So, the Python Code ds25L10.py solves equation 4

where you need to input the values for the constants r, K, 4 and B.

The fixed points N, (equilibrium populations) of the system are
determined from equation 4 when N = 0.
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It 1s obvious that N, = 0 is one fixed point. The other fixed points are
found graphically by plotting N vs N and determining the zero

crossing of the function.



x = linspace(0,1.1*K,num)
xDot = r¥x*(1 - x/K) - B*x**2/(A**2 + x**2)
# Find zeros in Ndot
Q=np.zeros(2); p=0
for cin range(num-2):
g = xDot[c]*xDot[c+1]
if g<=0:
Q[p]=c
p =int(p+1)
Ql = Q.astype(int)
xZ = x[Ql] # Zeros for xDot

The constants », A and B are bifurcation parameters. The number of
fixed points depends upon the values of , 4 and B and bifurcations

occur at critical values of , 4 and B.

Zero population N = 0 means that the population is extinct and there
can be no growth in the population. However, for a very small
population, the fixed point N, =0 may be stable or unstable

depending on the values of r, 4 and B.

The condition for the fixed points is given by equation 5, which can

be expressed (N, #0)as



(6)
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So, when plotted, the intersection of the two functions y; and y, give

the values for the fixed points when N, # 0.

For the simulations shown below the values of », K and B are kept
constant. The constant A4 is varied and is the bifurcation parameter for

the simulations.



SIMULATIONS
Simulation1l r=15 K=1.0 A4=0.100 B=0.300
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Fig. 1A. Predation curve (equation 3).
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Fig. 1B. Equation 6 plots.
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Fig. 1C. Equation 4 plot. There are four fixed points for
A=0.100 and B = 0.300.
x.=0 unstable (positive slope)
x. = 0.0681 stable  (negative slope)
x.=0.1996  unstable (positive slope)
x.= 0.7311 stable (negative slope)
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Fig 1D. Population trajectories. For different initial

conditions, all trajectories converge to a stable fixed point.
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Fig. 1E. Vector field quiver plot and insect population
trajectories. The trajectories are repelled from an unstable
fixed point and attracted to a stable fixed point.



Fig. 1F. Vector field streamplot plot and insect population
trajectories. The “flow” is away from an unstable fixed point
and towards a stable fixed point.
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Fig. 2A. Predation curve (equation 3).
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Fig. 2B. Equation 6 plots.
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Fig. 2C. Equation 4 plot. There are four fixed points for A =
0.100 and B = 0.300.

x.=0 unstable (positive slope)
xXe~0.13 semi-stable  (negative / positive slope)
x.= 0.7335 stable (negative slope)
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Fig 2D. Population trajectories. For different initial

conditions, all trajectories converge to a stable fixed point.

Fig. 2E. Vector field quiver plot and insect population
trajectories. The trajectories are repelled from an unstable
fixed point to a stable fixed point.

12



1.0

0.8

Fig. 2F. Vector field streamplot plot and insect population

trajectories. The “flow” is away from an unstable fixed point
and towards a stable fixed point. a stable fixed point.
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Simulation3 r=15 K=10 A4=0.118 B=0.300
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Fig. 3A. Predation curve (equation 3).
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Fig. 3B. Equation 6 plots.
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Fig. 3C. Equation 4 plot. There are four fixed points for A =
0.100 and B = 0.300.
x.=0 unstable (positive slope)

xe=10.7343 stable  (negative slope)
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Fig 3D. Population trajectories. For different initial

conditions, all trajectories converge to a stable fixed point.
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Fig. 3E. Vector field quiver plot and insect population
trajectories. The trajectories are repelled from an unstable
fixed point to a stable fixed point.

Fig. 3F. Vector field streamplot plot and insect population
trajectories. The “flow” 1s away from an unstable fixed point
and towards a stable fixed point. a stable fixed point.
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The critical value of the bifurcation parameter 4 is

A-~0.114

A< A, = 4 fixed points
A=A, =3 fixed points
A> A, = 2 fixed points

Not counting the fixed point N, = 0 as 4 is varied there are two saddle

node bifurcation.

A 0.118 0.114 0.100
&_... 0.7335 0.7311
Xe 0.1996
. 013 e
saddle node saddle node
bifurcation bifurcation
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