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INTRODUCTION 

Population growth models describe how the size of a population 

changes over time. The two fundamental models are exponential 

growth, which shows a population growing at an ever-increasing rate 

with unlimited resources, and the logistic model, a more realistic 

model where growth slows and levels off at the environment's 

carrying capacity, K due to resource limitations.  

  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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SIMULATIONS 

Exponential growth 

Consider the very simple difference equation for the variable x 

 1t tx a x+ =  

where  1tx +  is the value of x at time step t+1 and xt is the x value at 

time step t, a is a model parameter and is constant, and the initial 

condition is given by the value of 0x . 

The analytical solution is 

 ( )0 0( ) log / /
bt

n nx t x e b x x t= =  

where the value of the constant b is found from the value of xn at time 

step n. Thus, the variable x will increase exponentially with time as 

shown in figure 1 where the initial condition is x0 = 1 and a = 1.2 

 

Fig. 1. Blue curve: solution of the difference equation 

            Red dots – exponential function 

            x0 = 1   a = 1.2                      cs_001.py 
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Fish population growth with constant harvesting 

We can model the growth of a fish population when there is a 

constant removal of fish (harvesting) by the simple linear difference 

equation 

1t tx a x b+ = −                

where x is the scaled fish population with initial condition given by x0, 

and a and b are positive constants. The results of the simulation are 

shown in figure 2. 

 

 

 

Fig. 2.    Time evolution of scaled fish population: x0 =100 and 

a = 1.1.  Blue curve b = 4, magenta curve b = 9, red curve b = 11, 

and black curve b = 10. 

x0 = 1   a = 1.1                      cs_001.py 
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From the plot displayed in figure 2, it is obvious why this difference 

equation is so useful in describing the evolution of a fish population. 

With x0 = 100, for of b < 10 then the population will grow 

exponentially and if b > 10 then the population will become extinct. 

However, if b = 10, the there is a stable equilibrium and the 

population remains constant at 100 only if the initial population is 100 

(x0 = 100).  

 

The steady-state solution ssx  occurs when 1t tx x+ = , so 

 
1

ss

b
x

a
=

−
 

If a = 1.1 

b = 10, then xss = 100  

b > 10, then xss = 0 

b < 10, then ssx →    as shown in figure 2. 

If 1a  , then xss = 0 
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Population dynamics:   LOGISTIC EQUATION         cs106.py 

A simple mathematical model for the dynamics of a population is  

 1
N

N r N
K

 
= − 

 
                   logistic equation 

where N is the population, N is the rate of change of the population, r 

is the growth rate (positive constant), and K is the carrying population 

(equilibrium population). For the logistic equation, N / N is linearly 

related to the population N.  

The equilibrium points (fixed points) of the system are 

 0 ande eN N K= =  

 

To check the stability of the equilibrium, we need to consider the 

function  

( )' / 1 (2 / )
e

eN
f df dN r k N= = −  

0 ' 0eN f r= =      unstable 

' 0eN K f r= = −   stable 

 

For a small population the initial growth is exponential, but it slows 

down as the population approaches the carrying capacity K. The 

growth curve resembles an "S" shape. For a large population, there is 

an initial exponential decrease in population and then a lower decline 

as the population approaches the carrying capacity K (inverted “S” 

shape)  
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The population N is always positive (N > 0), since it makes no sense 

to think about a negative population and if N(0) = 0 then there’s 

nobody around to start reproducing, and so the population would be 

zero for all time (N(t) = 0). Ne = 0 is an unstable fixed point, so a 

small population will initially grow exponentially away from N ~ 0. 

 

N = K is a stable fixed point, thus, if N is disturbed slightly from K, 

the disturbance will decay monotonically back to K. 

 

Fig.  2.1.   Logical equation for carrying capacity K = 1. Fixed points: 

red dot (unstable) and blue dot (stable). The flow of the population is 

aways away from an unstable fixed point and towards a stable fixed 

point.  
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Fig. 2.2.   Time evolution of the population for three initial 

conditions. The three populations converge to the population capacity, 

K. 

 

The logistic equation has been tested in laboratory experiments in 

which colonies of bacteria, yeast, or other simple organisms were 

grown in conditions of constant climate, food supply, and absence of 

predators. These experiments often yielded growth curves with an 

impressive match to the logistic predictions. However, for organisms 

with more complicated lifecycles, the agreement between experiment 

and predictions was not so good. 

 

Another way to explore [1D] dynamical systems is to plot the slope 

field for the system in the (t, x) plane (figure 2.3). The equation 

( )1x x x= −  with r = 1 and K = 1, can be interpreted in a new way: 

for each point (t, x), the equation gives the slope dx / dt of the solution 
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passing through that point. The slope field can be show using a quiver 

plot (figure 2.3) or a streamplot (figure 2.4). Then, finding a solution 

now becomes a problem of drawing a curve that is always tangent to 

the local slope.  

 

Fixed points dominate the dynamics of first-order systems. In all our 

examples, all trajectories either approached a fixed point, or diverged 

to  .  These are the only things that can happen for a vector field on 

the real line [1D]. The reason is that trajectories are forced to increase 

or decrease monotonically, or remain constant. To put it more 

geometrically, the phase point never reverses. Hence the 

impossibility of oscillations. 

 

 

Fig. 2.3. Slope field quiver plot (normalized so that all arrows have 

unit length). All trajectories converge to the carrying capacity K = 1. 
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 The slope is given by dY/dX for dY is the function for x  and dX is 

set to 1. 

 

N = 15; t = linspace(0,10,N); x = linspace(0,2,N) 

f = x*(1-x) 

T,X = np.meshgrid(t,x) 

dX = np.ones([N,N]) 

F = X*(1-X) 

dY = F/(np.sqrt(dX**2 + F**2)) 

dX = dX/(np.sqrt(dX**2 + F**2)) 

 

 

Fig. 2.4.  Slope field streamplot. All trajectories converge to the 

carrying capacity K = 1. 
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Fig. 2.5.  Slope field and three trajectories with different initial 

conditions. 

 

 


