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DOING PHYSICS WITH PYTHON 
 

DYNAMICAL SYSTEMS [1D] 

FLOW IN A CIRCLE  

  

Ian Cooper 
matlabvisualphysics@gmail.com 
 

DOWNLOAD DIRECTORIES FOR PYTHON CODE 

 Google drive 

 GitHub 

ds25L11.py   

You will need to make small modifications to the Code for different 

examples. 

 

Jason Bramburger 

Flows on the Circle - Dynamical Systems | Lecture 11 

https://www.youtube.com/watch?v=jcFSI7tn8tY 

 

 

INTRODUCTION 

We are going to consider through a number of examples. the flow 

along a circle where x is the angle [rad] and is x  the angular velocity 

[rad.s-1]. The ODEs for the system are of the form 

 ( ) sin( )x f x a x= = −      and    x x=  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://www.youtube.com/watch?v=jcFSI7tn8tY
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Example 1     2 0a = =      x =      rad.min-1 

This corresponds to uniform oscillations with period 

2 / 1.00 minT  = =  

The angle x continually increases at a constant rate. There are no fixed 

points for this system. From any initial condition x(0), the angle x will 

just increase. 

  

Consider three people running around a circular oval with angular 

velocities 2 , , / 2x   =  rad.min-1. When do they overlap each other? 

The periods are T = (1, 2, 4) min. We can this question graphically by 

plotting x against t. 

 

Blue and red runners overlap every 2.00 min, blue and magenta 

runners overlap every 1.33 min and the red and magenta runners 

overlap every 4.00 min. 
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We can also determine the overlap times by using the fact that the 

phase difference between two runners passing each other is 2 .  
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Example 2       0 1a = = −  

        sin( )x x=      rad.s-1 

 There are two fixed points xss for the system 

 0 sin( ) 0 0ss ss ssx x x x = =  = =  

Stability of the two fixed points 
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For all trajectories where (0) ssx x  converge to the stable 

fixed point ssx = .  
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Fixed point xss = 0 is unstable (positive slope) and fixed point xss =   

is stable (negative slope). 

 

Example 3     x x=     Single fixed point xss = 0  which is unstable. 

 The function x x=  cannot represent flow in a circle since there is no 

unique velocity  0 0 2 2x x x x = = = = . For flow on a circle 

the function f(x) must be periodic in 2 : ( ) ( 2 )f x f x = +  

 

 

Angle x increases with increasing angular velocity x  
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Example 4         sin( )x a x= −  

4.1     1.0 0.5aa  = =          

No fixed points since ( )0 0 sin( ) / 1x x x a =  =  . 

 

 

1.0 0.5 7.26a a T  = = =  

Period of oscillation T 
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The integral is evaluated numerical using the Python function 

simpson.     
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As a T→ →         bottleneck 

 

 

There are no fixed points as 0x  . Flow is slowest at / 2x =  and 

faster at 3 / 2x = . So, near / 2x =   the flow is very slow (like a 

bottleneck) and rapid near 3 / 2x = . This type of behaviour can be 

used to model a spiking neuron. 
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4.2      a =  

     
( )1 sin( )

0 sin( ) 1 / 2ss

a x a x

x x x





= = −

=  =  =
 

When a =  a single fixed point emerges where / 2ssx = . 

 

/ 2ssx =  is a marginally stable fixed point   

 

 

Trajectories for 4 initial conditions. The fixed point is 

2.5 / 2ssx  =  . The flow is always in a positive sense 

to the fixed point / 2ssx = irrespective of the initial 

condition x(0). The fixed point  / 2ssx = is marginally 

stable. 
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4.3         a   
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There are now two fixed point. Slope of the function x  is 

negative at (1 / 4)ssx = implies stable fixed point and 

the positive slope at (3 / 4)ssx =  implies an unstable 

fixed point. 

 

0 (0) 0.25 flow positive(anticlockwise)

0.25 (0) 0.75 flow negative(clockwise)

0.75 (0) 2 flow positive(anticlockwise)
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Trajectories with different initial conditions all converge 

to the stable fixed point 0.25 (2.25 )ssx  = . The 

unstable fixed point is 0.75ssx = .  

 

We get a saddle node bifurcation 

 a          no fixed points 

 a =         one fixed point  

a          two fixed points emerge  

 

 

 

 


