DOING PHYSICS WITH PYTHON

DYNAMICAL SYSTEMS [1D] GHOSTS AND BOTTLENECKS

Ian Cooper

matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORIES FOR PYTHON CODE

Google drive

GitHub

ds25L12.py ds25L12N.py

Jason Bramburger

Ghosts and Bottlenecks - Dynamical Systems | Lecture 12

https://www.youtube.com/watch?v=4cxhMwmVcnE

Reviews

Saddle node bifurcations

Flow on a circle

INTRODUCTION

This article investigates saddle-node bifurcations at the bifurcation point where fixed points are created. The result is a "ghost fixed point" that leads to a bottleneck in the time evolution of the system. We show that these bottlenecks should be expected near the onset of a saddle-node bifurcation, no matter what the system looks like.

Example 1 ds25L12.py

We will consider the system studied in lecture 11.

$$\dot{x} = f(x) = \omega - a \sin(x)$$
 where $\omega \ge a$

$$\omega = a$$
 $\dot{x} = a(1 - \sin(x))$
 $\dot{x} = 0 \Rightarrow \sin(x) = 1 \Rightarrow x_{ss} = \pi / 2$

When $\omega = a$ a single fixed point emerges where $x_{ss} = \pi / 2$.

 $\omega > a$

No fixed points for all times since

$$\dot{x}(t) > 0$$
 $\dot{x} = 0 \implies \sin(x) = \omega / a > 1$

Since the angular velocity is always positive $\dot{x}(t) > 0$, the flow will be continuous on the circle in an anticlockwise sense. The period of oscillation T is

$$T = \int_0^T dt = \int_0^{2\pi} \frac{dt}{dx} dx = \int_0^{2\pi} \left(\frac{1}{\omega - a \sin(x)} \right) dx$$

The integral is evaluated numerical using the Python function simpson.

Fig. 1. The period of oscillation T as a function of the bifurcation parameter a when $\omega > a$. As $a \to \omega \Rightarrow T \to \infty$.

Figure 2 shows a series of plots of \dot{x} as a function of the angle x. When $a = \omega$ there is a single fixed point at $x = \pi/2$ and when $a > \omega$ there are two fixed points, one stable and the other unstable. For the case when $\omega > a$, the flow is slowest at $x = \pi/2$ (minimum of \dot{x}). As a gets closer to ω ($a \to \omega$) the minimum value of \dot{x} approaches zero and thus the period of oscillation increases towards infinity. In this sense the angle $x = \pi/2$ acts as a "ghost" fixed point and there is a bottleneck in the flow in the region surrounding $x = \pi/2$ where the saddle node bifurcation occurs.

Figure 3 shows the trajectory of x as a function of time t as the value of a gets closer and closer ω . The trajectories show the bottleneck region very clearly and the "ghost" fixed point at $x = \pi/2$.

Fig. 2. \dot{x} as a function of a.

Fig. 3. Flow trajectories.

As $\omega > a$ $a \to \omega$ in the bottleneck region the flow becomes slow and the period of oscillation becomes very large. This event is a precursor to a saddle node bifurcation. At the bifurcation point two fixed points are created when $a > \omega$. This trend of the flow around the circle becoming impeded as $\omega > a$ $a \to \omega$ applies to all saddle node bifurcations.

The time spent in a bottleneck applies to all saddle node bifurcations.

We can consider the normal form of a saddle node bifurcation system. It can be shown that bifurcation systems can be approximated by the normal form.

SUBCRITICAL SADDLE NODE BIFURCATION cs100.py

The ODE for the normal form of a saddle node bifurcation is

$$\dot{x}(t) = r + x(t)^2$$
 r is an adjustable constant

$$f(x) = r + x^2 \qquad f'(x) = 2x$$

$$\dot{x} = 0 \implies x_{\rho} = \pm \sqrt{-r}$$

Thus, there are three possible fixed points;

$$r > 0$$
 no fixed points

$$r = 0$$
 one fixed point $x_e = 0$

$$r < 0$$
 two fixed points $x_e = -\sqrt{-r}$ $x_e = +\sqrt{-r}$

Example 2 Normal form subcritical saddle node bifurcation ds25L12N.py

When r > 0 there are no fixed points and the flow is always positive and increases with time t as x increases. We can examine the flow when r > 0 for the normal form of a saddle node bifurcation as r decreases to zero. A bottleneck occurs for small values of r near the bifurcation point $x_{SS} = 0$ (r = 0). This bottleneck behaviour is clearly shown in figures 4, 5, and 6.

The time T for the flow to go from x = 0 to $x = x_{Max}$ is calculated from the ODE equation by integration. The integration is done numerically using the Python function **simpson**. We can thus calculate the dependence of T on the bifurcation parameter r (figure 4).

$$\dot{x}(t) = r + x(t)^{2}$$

$$T(r) = \int_{0}^{t_{Max}} dt = \int_{0}^{x_{Max}} \frac{dx}{r + x(t)^{2}}$$

Fig. 4. A bottleneck occurs when $r \to 0$. T is the time taken for the flow from x = 0 to x = 10.

Fig. 5. As x(t) increases then $\dot{x}(t)$ becomes independent of r.

$$\dot{x}(t) \approx x(t)^2$$

Fig. 6. As $r \to 0$ the time in the bottleneck increases dramatically.