DOING PHYSICS WITH PYTHON

DYNAMICAL SYSTEMS [1D] THE GEOMETRY OF FLOWS ON THE LINE

Ian Cooper

matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORIES FOR PYTHON CODE

Google drive

GitHub

ds25L2.py
$$\dot{x} = f(x) = \sin(x)$$

Jason Bramburger

The Geometry of Flows on the Line - Dynamical Systems | Lecture 2 https://www.youtube.com/watch?v=LSpXhwsksVY

INTRODUCTION

This article will exam the geometry of flows on the line for [1D] dynamical systems of the form

$$\dot{x} = f(x)$$

In the analysis of such dynamical systems, we can solve the ODE equation to find the time variation of the state variable x, find the steady-state solutions x_{ss} and check their stability.

```
SIMULATION \dot{x} = \sin(x)
```

```
(1) \dot{x} = \sin(x) initial condition x(0) = x_0
```

Equation (1) and be solved numerically using the Python function **odeint**.

```
from scipy.integrate import odeint
def lorenz(t, state):
  x = state
  dx = \sin(x)
  return dx
#%% SETUP
u0 = pi/2
tMax = 10; N = 9999
#%% SOLVE ODE
t = linspace(0,tMax,N)
sol = odeint(lorenz, u0, t, tfirst=True)
x = sol[:,0]
# fixed points
xss = zeros(2)
xss[0] = 0; xss[1] = pi
# xDot
X = Iinspace(0,2*pi,999)
Xdot = sin(X)
```

The steady-state solutions are

(2)
$$\dot{x} = \sin(x_{ss}) = 0 \Rightarrow x_{ss} = 0$$
 and $x_{ss} = \pi$

where x_{ss} is a fixed-point of the system.

To determine the stability of each fixed point, let

$$f(x) = \sin(x)$$
 $f'(x) = \cos(x)$

then

$$f'(x_{ss}) < 0$$
 stable fixed point

 \Rightarrow the flow is decreasing and moving to left (-x direction)

$$f'(x_{ss}) > 0$$
 unstable fixed point

 \Rightarrow the flow is increasing and moving to right (+x direction)

Thus,

$$x_{ss} = \pi \implies f'(\pi) = \cos(\pi) = -1 < 0$$
 stable fixed point

$$x_{ss} = 0 \implies f'(0) = \cos(0) = 1 > 0$$
 unstable fixed point

The fixed points are $x_{ss} = 0$ (positive slope, unstable) and $x_{ss} = \pi$ (negative slope, stable).

 $0 < x < \pi \implies f'(x) > 0 \implies x$ increasing, flow to the right $\pi < x < 2\pi \implies f'(x) < 0 \implies x$ decreasing, flow to the left $x_{ss} = 0$ $x_{ss} = \pi \implies$ no flow $x_{ss} \neq 0$ $x_{ss} \neq \pi \implies t \rightarrow \infty$ $x \rightarrow \pi$

 $x_{ss} \neq 0$ $x_{ss} \neq \pi \Rightarrow$ all trajectories are pulled towards the stable fixed point $x_{ss} = \pi$.