DOING PHYSICS WITH PYTHON

DYNAMICAL SYSTEMS [1D]
FIXED POINTS AND STABILITY

lan Cooper
matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORIES FOR PYTHON CODE

Google drive

GitHub

ds25L3.py x=x"-1
ds25L3A.py x=x—cos(x)

- N
ds25L3B.py Population growth N = rN(l _Ej

Jason Bramburger
Fixed Points and Stability - Dynamical Systems | Lecture 3

https://www.youtube.com/watch?v=BIBbPYuQyz0

INTRODUCTION

In this article we discuss fixed points of [1D] dynamical systems
Fixed points go by many different names depending on the discipline,
including steady-states, equilibria, equilibrium points, and rest-states
They all mean the same thing. We introduce the basics of fixed points
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and discuss what it means for them to be stable. We analyse stability

using a number of approaches.

STABILITY

We can look at the mathematics defining the stability of fixed points.
Consider the function d(¢) for the difference between the solution x(z)
and the fixed point x,

d(1) = x(t) = x
If d(¢) increases with time, then x;, 1s unstable or stable and if d(¢)

decreases with time.
d(t)=x(t)= f(x) = f(d+x,)
Using the Taylor expansion about x;
d(t)=3(t) = f(x)= f(d +x,,)
)= f(x )+ f(x,)d +0(d?)
f(x)=0 O(d*)=0
fx)=f(x,)d=Ad A= f(x;)
d=21d
The solution of the ODE d = Ad gives either exponential growth or
decay
d=dye*" d,=d(0)

= A=f'(x,)>0  exponential growth 1 — o x(¢) — Foo
Unstable

= A=f'(x,)<0 exponential decay ¢— o0 x(¢) > x
Stable



SIMULATIONS

Example 1 ds25L3.py x=x"—1

x=x> -1 initial condition x(0) = xo

This equation can be solved numerically using the Python function

odeint.

The steady-state solutions are
x=x"-1=0=x,=-1 and x_  =+1

where x,s 1s a fixed-point of the system.

To determine the stability of each fixed point, let
S =x"=1 f'(x)=2x

then
f'(x,)<0 stable fixed point
= the flow is decreasing and moving to left (-x direction)
f'(x,)>0 unstable fixed point
= the flow is increasing and moving to right (+x direction)
Thus,

x,=—1 = f'(-1)=-2<0 stable fixed point

x,=+1 = f'1)=2>0 unstable fixed point



Fixed pomntxy, = f(x,)=0 = x=x V¢

Xss 18 stable if x(0) ‘close’ to x4 then x(7) will stay ‘close’ to xgs

xDot

Stable fixed point x4 = -1: the flow is pulled into x = -1 and the fixed
point acts as a sink or an attractor.
Unstable fixed point x4 = +1: the flow is pushed away from x = +1

and the fixed point acts as a source or a repeller.
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Example 2  ds25L3A.py x=x-cos(x) —7<x<+4rx
The steady-state solutions are
3) x=x,—cos(x,)=0= x,=0.7391
where x, 1s a fixed-point of the system.
The value of x, 1s calculated using the Python function fsolve
# fixed points
def equations(variables):
Z = variables # Unpack the variables
eq =7 - cos(2)
return eq
IC = [1.0] # Initial guess for xand y

xss = fsolve(equations, IC)



To determine the stability of each fixed point, let
f(x)=x—cos(x) f'(x)=1+sin(x)
Sf'(x,, =0.7391) =1+5in(0.7391) =1.67 > 0

The fixed point x5 = 0.7391 is unstable

Hgg = 0.7391 rad
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x>cos(x) f'(x)>0 = flow in direction x increasing
xVcos(x) f'(x)<0 = flow in direction x decreasing

v =x (magenta) y=cos(x) (zreen) y=x—cos(x) (black)

500 A

=500 A

x(0) # x,, x(0)<0.7391 =¢-—>0 x —>—©

x(0)>0.7391 =t —> o x > +w



Example 3 Population growth ds27L3B.py
We will consider the simplest population growth model

N=rN

where N is the rate of change of the population, N is the population at
time ¢ and » > 0 is the population growth rate. The solution to this
equation is that the population grows exponentially and is unbounded

(population grows for ever)

N=N,e" t=0,N(0)=N, t—>0 = N—>©

This is an unrealistic model. We can add a term to the ODE to
represent the competition for limited resources which will limit the
maximum size of the population to its carrying capacity K (maximum

population that the environment can support).

Let the per capita growth rate be N/ N, then
N/N>0 if N<K population will increase
N/N<0 if N>K  population will decrease

The simplest model for competition between resources is known as

the logistic model
N=r N(l = Ej
K

N(¢) > 0 otherwise there is no population.

The steady-state population is given by the fixed point N
N=0= N, =K

Ignore N = 0 since it means zero population.



So, for all initial conditions N(0) > 0, the population will converge to
the carrying capacity K.
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