DOING PHYSICS WITH PYTHON

DYNAMICAL SYSTEMS [1D] FIXED POINTS AND STABILITY

Ian Cooper

matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORIES FOR PYTHON CODE

Google drive

GitHub

ds25L3.py
$$\dot{x} = x^2 - 1$$

$$ds25L3A.py \dot{x} = x - \cos(x)$$

ds25L3B.py Population growth
$$\dot{N} = r N \left(1 - \frac{N}{K} \right)$$

Jason Bramburger

Fixed Points and Stability - Dynamical Systems | Lecture 3

https://www.youtube.com/watch?v=BIBbPYuQyz0

INTRODUCTION

In this article we discuss fixed points of [1D] dynamical systems

Fixed points go by many different names depending on the discipline,
including steady-states, equilibria, equilibrium points, and rest-states

They all mean the same thing. We introduce the basics of fixed points

and discuss what it means for them to be stable. We analyse stability using a number of approaches.

STABILITY

We can look at the mathematics defining the stability of fixed points. Consider the function d(t) for the difference between the solution x(t) and the fixed point x_{ss}

$$d(t) = x(t) - x_{ss}$$

If d(t) increases with time, then x_{ss} is unstable or stable and if d(t) decreases with time.

$$\dot{d}(t) = \dot{x}(t) = f(x) = f(d + x_{ss})$$

Using the Taylor expansion about x_{ss}

$$\dot{d}(t) = \dot{x}(t) = f(x) = f(d + x_{ss})$$

$$f(x) = f(x_{ss}) + f'(x_{ss})d + O(d^2)$$

$$f(x_{ss}) = 0 \quad O(d^2) \approx 0$$

$$f(x) = f'(x_{ss})d = \lambda d \quad \lambda = f'(x_{ss})$$

$$\dot{d} = \lambda d$$

The solution of the ODE $\dot{d} = \lambda d$ gives either exponential growth or decay

$$d = d_0 e^{\lambda t}$$
 $d_0 = d(0)$
 $\Rightarrow \lambda = f'(x_{ss}) > 0$ exponential growth $t \to \infty$ $x(t) \to \pm \infty$
Unstable
 $\Rightarrow \lambda = f'(x_{ss}) < 0$ exponential decay $t \to \infty$ $x(t) \to x_{ss}$
Stable

SIMULATIONS

Example 1 ds25L3.py
$$\dot{x} = x^2 - 1$$

$$\dot{x} = x^2 - 1$$
 initial condition $x(0) = x_0$

This equation can be solved numerically using the Python function odeint.

The steady-state solutions are

$$\dot{x} = x_{ss}^2 - 1 = 0 \Longrightarrow x_{ss} = -1$$
 and $x_{ss} = +1$

where x_{ss} is a fixed-point of the system.

To determine the stability of each fixed point, let

$$f(x) = x^2 - 1$$
 $f'(x) = 2x$

then

$$f'(x_{ss}) < 0$$
 stable fixed point

 \Rightarrow the flow is decreasing and moving to left (-x direction)

$$f'(x_{ss}) > 0$$
 unstable fixed point

 \Rightarrow the flow is increasing and moving to right (+x direction)

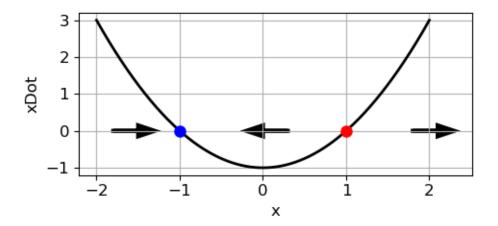
Thus,

$$x_{ss} = -1 \implies f'(-1) = -2 < 0$$
 stable fixed point

$$x_{ss} = +1 \implies f'(1) = 2 > 0$$
 unstable fixed point

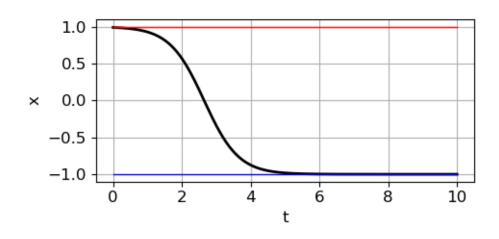
Fixed point $x_{ss} \implies f(x_{ss}) = 0 \implies x = x_{ss} \ \forall \ t$

 x_{ss} is **stable** if x(0) 'close' to x_{ss} then x(t) will stay 'close' to x_{ss}

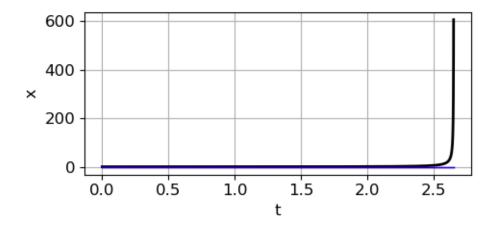


Stable fixed point $x_{ss} = -1$: the flow is pulled into x = -1 and the fixed point acts as a sink or an attractor.

Unstable fixed point $x_{ss} = +1$: the flow is pushed away from x = +1 and the fixed point acts as a source or a repeller.



$$x(0) = 0.99$$



$$x(0) = 1.01$$

$$x(0) < -1 \Rightarrow t \rightarrow \infty \quad x \rightarrow -1$$

$$x(0) < +1 \Rightarrow t \rightarrow \infty \quad x \rightarrow -1$$

$$x(0) > +1 \Rightarrow t \rightarrow \infty \ x \rightarrow +\infty$$

Example 2 ds25L3A.py
$$\dot{x} = x - \cos(x)$$
 $-\pi \le x \le +\pi$

The steady-state solutions are

(3)
$$\dot{x} = x_{ss} - \cos(x_{ss}) = 0 \Rightarrow x_{ss} = 0.7391$$

where x_{ss} is a fixed-point of the system.

The value of x_{ss} is calculated using the Python function **fsolve**

fixed points

def equations(variables):

Z = variables # Unpack the variables

eq = Z - cos(Z)

return eq

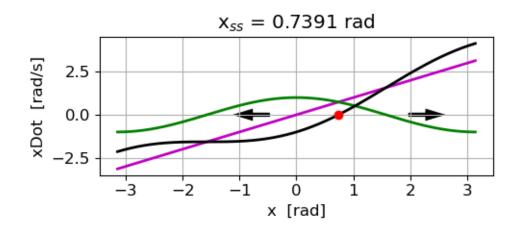
IC = [1.0] # Initial guess for x and y

xss = fsolve(equations, IC)

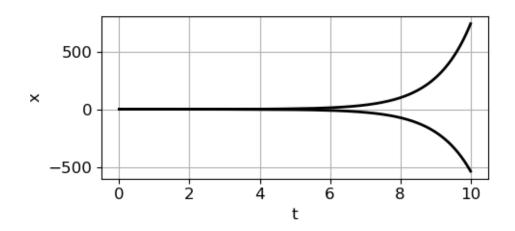
To determine the stability of each fixed point, let

$$f(x) = x - \cos(x) \quad f'(x) = 1 + \sin(x)$$
$$f'(x_{ss} = 0.7391) = 1 + \sin(0.7391) = 1.67 > 0$$

The fixed point $x_{ss} = 0.7391$ is unstable



 $x > \cos(x)$ $f'(x) > 0 \Rightarrow$ flow in direction x increasing $xV\cos(x)$ $f'(x) < 0 \Rightarrow$ flow in direction x decreasing y = x (magenta) $y = \cos(x)$ (green) $y = x - \cos(x)$ (black)



$$x(0) \neq x_{ss}$$
 $x(0) < 0.7391 \Rightarrow t \rightarrow \infty$ $x \rightarrow -\infty$
 $x(0) > 0.7391 \Rightarrow t \rightarrow \infty$ $x \rightarrow +\infty$

Example 3 Population growth ds27L3B.py

We will consider the simplest population growth model

$$\dot{N} = r N$$

where \dot{N} is the rate of change of the population, N is the population at time t and t > 0 is the population growth rate. The solution to this equation is that the population grows exponentially and is unbounded (population grows for ever)

$$N = N_0 e^{rt}$$
 $t = 0, N(0) = N_0$ $t \to \infty \Rightarrow N \to \infty$

This is an unrealistic model. We can add a term to the ODE to represent the competition for limited resources which will limit the maximum size of the population to its carrying capacity K (maximum population that the environment can support).

Let the per capita growth rate be \dot{N}/N , then

$$\dot{N}/N > 0$$
 if $N < K$ population will increase $\dot{N}/N < 0$ if $N > K$ population will decrease

The simplest model for competition between resources is known as the **logistic model**

$$\dot{N} = r N \left(1 - \frac{N}{K} \right)$$

N(t) > 0 otherwise there is no population.

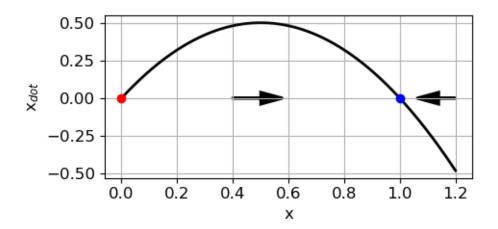
The steady-state population is given by the fixed point N_{ss}

$$\dot{N} = 0 \implies N_{ss} = K$$

Ignore N = 0 since it means zero population.

So, for all initial conditions N(0) > 0, the population will converge to the carrying capacity K.

$$r=2$$
 $K=1$



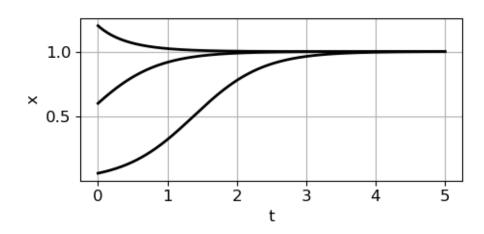
slope at $x_{ss} = 0$ is positive \Rightarrow unstable

slope at $x_{ss} = 1$ is negative \Rightarrow stable

$$\dot{N} = r N \left(1 - \frac{N}{K} \right)$$
 $f'(N) = r - \frac{2N}{K}$ $r > 0$

$$f'(0) = r > 0$$
 unstable

$$f'(K) = -r < 0$$
 stable



$$N(0) \neq 0 \implies N(t) \rightarrow K$$