
1

DOING PHYSICS WITH PYTHON

DYNAMICAL SYSTEMS [1D]

FIXED POINTS AND STABILITY

Ian Cooper
matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORIES FOR PYTHON CODE

 Google drive

 GitHub

ds25L3.py 2
1x x= −

ds25L3A.py cos()x x x= −

ds25L3B.py Population growth 1
N

N r N
K

 
= − 

 

Jason Bramburger

Fixed Points and Stability - Dynamical Systems | Lecture 3

https://www.youtube.com/watch?v=BlBbPYuQyz0

INTRODUCTION

In this article we discuss fixed points of [1D] dynamical systems

Fixed points go by many different names depending on the discipline,

including steady-states, equilibria, equilibrium points, and rest-states

They all mean the same thing. We introduce the basics of fixed points

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://www.youtube.com/watch?v=BlBbPYuQyz0

2

and discuss what it means for them to be stable. We analyse stability

using a number of approaches.

STABILITY

We can look at the mathematics defining the stability of fixed points.

Consider the function d(t) for the difference between the solution x(t)

and the fixed point xss

 () () ssd t x t x= −

If d(t) increases with time, then xss is unstable or stable and if d(t)

decreases with time.

 () () () ()ssd t x t f x f d x= = = +

Using the Taylor expansion about xss

2

2

() () () ()

() () '() ()

() 0 () 0

() '() '()

ss

ss ss

ss

ss ss

d t x t f x f d x

f x f x f x d O d

f x O d

f x f x d d f x

d d

 



= = = +

= + +

= 

= = =

=

The solution of the ODE d d= gives either exponential growth or

decay

 0 0 (0)
t

d d e d d


= =

 '() 0ssf x =  exponential growth ()t x t→ →

 Unstable

 '() 0ssf x =  exponential decay () sst x t x→ →

 Stable

3

SIMULATIONS

Example 1 ds25L3.py
2

1x x= −

2

1x x= − initial condition x(0) = x0

This equation can be solved numerically using the Python function

odeint.

The steady-state solutions are

 2
1 0 1 and 1ss ss ssx x x x= − =  = − = +

where xss is a fixed-point of the system.

To determine the stability of each fixed point, let

2

() 1 '() 2f x x f x x= − =

then

 '() 0ssf x  stable fixed point

  the flow is decreasing and moving to left (-x direction)

 '() 0ssf x  unstable fixed point

  the flow is increasing and moving to right (+x direction)

Thus,

 1 '(1) 2 0ssx f= −  − = −  stable fixed point

 1 '(1) 2 0ssx f= +  =  unstable fixed point

4

Fixed point xss () 0ss ssf x x x t =  = 

xss is stable if x(0) ‘close’ to xss then x(t) will stay ‘close’ to xss

Stable fixed point xss = -1: the flow is pulled into x = -1 and the fixed

point acts as a sink or an attractor.

Unstable fixed point xss = +1: the flow is pushed away from x = +1

and the fixed point acts as a source or a repeller.

x(0) = 0.99

5

x(0) = 1.01

(0) 1 1

(0) 1 1

(0) 1

x t x

x t x

x t x

 −  → → −

 +  → → −

 +  → → +

Example 2 ds25L3A.py cos()x x x= − x −   +

The steady-state solutions are

 (3) cos() 0 0.7391ss ss ssx x x x= − =  =

where xss is a fixed-point of the system.

The value of xss is calculated using the Python function fsolve

fixed points

def equations(variables):

 Z = variables # Unpack the variables

 eq = Z - cos(Z)

 return eq

IC = [1.0] # Initial guess for x and y

xss = fsolve(equations, IC)

6

To determine the stability of each fixed point, let

 () cos() '() 1 sin()f x x x f x x= − = +

 '(0.7391) 1 sin(0.7391) 1.67 0ssf x = = + = 

The fixed point xss = 0.7391 is unstable

cos() '() 0x x f x   flow in direction x increasing

cos() '() 0xV x f x   flow in direction x decreasing

y = x (magenta) y = cos(x) (green) y = x – cos(x) (black)

(0) (0) 0.7391

(0) 0.7391

ssx x x t x

x t x

   → → −

  → → +

7

Example 3 Population growth ds27L3B.py

We will consider the simplest population growth model

 N r N=

where N is the rate of change of the population, N is the population at

time t and r > 0 is the population growth rate. The solution to this

equation is that the population grows exponentially and is unbounded

(population grows for ever)

 0 00, (0)
r t

N N e t N N t N= = = →  →

This is an unrealistic model. We can add a term to the ODE to

represent the competition for limited resources which will limit the

maximum size of the population to its carrying capacity K (maximum

population that the environment can support).

Let the per capita growth rate be /N N , then

 / 0 ifN N N K  population will increase

 / 0 ifN N N K  population will decrease

The simplest model for competition between resources is known as

the logistic model

 1
N

N r N
K

 
= − 

 

N(t) > 0 otherwise there is no population.

The steady-state population is given by the fixed point Nss

 0 ssN N K=  =

Ignore N = 0 since it means zero population.

8

So, for all initial conditions N(0) > 0, the population will converge to

the carrying capacity K.

r = 2 K = 1

slope at xss = 0 is positive  unstable

slope at xss = 1 is negative  stable

2
1 '() 0

'(

e

unstable

(s b

0) 0

' a) t l0

N N
N r N f N r r

K K

f r

f K r

 
= − = −  

 

= 

= − 

(0) 0 ()N N t K  →

