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INTRODUCTION 

In dynamical systems, the existence and uniqueness theorem 

guarantees that under specific conditions, a differential equation has a 

solution and that is unique. This is crucial for ensuring that a model of 

a system behaves predictably and that predictions made based on the 

model are reliable.  Initial value problems (IVP) consist of a 

differential equation and an initial condition. The existence theorem 

ensures that a solution to the IVP exists, and the uniqueness 
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guarantees that the solution is unique, meaning there are no other 

possible solutions that satisfy both the differential equation and the 

initial condition.  

 

The theorem typically applies to first-order differential equations of 

the form dx/dt = f(x, t). For a unique solution to exist, the function   

f(x, t) and its partial derivative with respect to x,  ∂f/∂x must be 

continuous at the initial condition, x(0) = x0. 

 

Often, the theorem guarantees existence and uniqueness only within a 

local neighbourhood of the initial condition. Extending this to a global 

result requires stronger conditions.  

 

The existence and uniqueness theorem implies that only fixed points 

are significant, since there cannot be any oscillations. Since a solution 

is unique, you cannot go forward and backwards along the phase line, 

that is, the flow can not be such that you come back to where you 

start.  

NO PERIODIC SOLUTION FOR    ( )x f x=  
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SIMULATIONS 

Example 1    ds25L4.py    1/3
x x=  

  1/3
x x=                initial condition  x(0) = x0 = 0 

The steady-state is obviously xss = 0 

 

It is easy to show the solution to this ODE is 

 ( )
3/2

2
3

x t=  

 

The solution grows with time from t = 0. But we have just said that    

x = 0 is a fixed point, and if x0 = 0 then x(t) = 0 for all time. 

 

Something is wrong. There is no unique solution since the derivative 

of the function f(x) w.r.t x is not continuous at the fixed point xss = 0. 
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For a unique solution to exist, the function  f(x, t) and its partial 

derivative with respect to x,  ∂f/∂x must be continuous at the initial 

condition, x(0) = x0. This condition is not satisfied. 

 

 

 

The derivative of the function 1/3
( )f x x= goes to + as 0x → . 
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Example 2    ds25L4.py    2
1x x= +  

2 2
1 0 1x x x x= + =  = −    there is no steady-state solution. 

For all x values 0x   flow to the right increases as x increases. 

We can solve the ODE using Python’s symbolic commands with the 

initial condition x(0) = 0 

 from sympy import symbols, integrate 
x = symbols('x') 
eq = 1/(1+x**2) 
integral = integrate(eq, x)        →  atan(x) 
t = linspace(-0.98*pi/2,0.98*pi/2,N) 
xt = tan(t) 

 

 
The solution only exists in the local region / 2 / 2t −    since the 

solution “blows-up” at  / 2t x= − = −  and / 2t x= = + . This 

is called a finite time blow up. If (0) 0x   then the constant of 

integration changes and finite time interval for the solution will also 

change. This is not obvious just by looking at the equation and a 

phase line diagram that these problems arise. So, you must always be 

careful. We conclude that finite solutions may only exist for a finite 

time. 


