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INTRODUCTION 

In this article, we will dive into bifurcations of one-dimensional 

dynamical systems. Bifurcation in dynamical systems refers to a 

qualitative change in the system's behaviour as a parameter is varied. 

Essentially, it's a point where a small change in a parameter can cause 

a significant shift in how the system evolves over time, such as a 
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change in the number or stability of equilibrium points or the 

emergence of oscillations. 

We will start with one of the simplest: the saddle-node bifurcation. 

Through examples we demonstrate that a saddle-node bifurcation 

arises through the manipulation of a system parameter that creates or 

destroys two fixed points.  

 

A saddle-node bifurcation occurs as the bifurcation parameter is 

varied and two equilibrium points (one stable and one unstable) 

approach each other. At the bifurcation point, they collide and 

annihilate each other, meaning they no longer exist as solutions to the 

system's equations. The pair of equilibria produced in a saddle-node 

bifurcation always consists of one stable and one unstable 

equilibrium. The stable equilibrium absorbs small disturbances, while 

the unstable one amplifies them. 

 

Examples 

Population Dynamics: A population model might exhibit a bifurcation 

where a stable population level becomes unstable, and the population 

either crashes or explodes depending on environmental conditions.  

Electrical Circuits: A circuit might have a stable state until a certain 

voltage is reached, at which point it might switch to an oscillating 

state.  
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Biological Systems: Cell cycle transitions, neural networks, and gene 

regulation can all be modelled using dynamical systems with 

bifurcations.  

 

The [1D] nonlinear system’s ODE can be expressed as 

              ( )( ) ( ),x t f x t r=  

and the fixed points of the system are 

              ( )( ), 0ef x t r =  

where r is the bifurcation parameter. So, the fixed points xe and their 

stability depends upon the bifurcation parameter. 

 

Example 1             SUBCRITICAL SADDLE NODE BIFURCATION   

                                cs100.py 

2
( ) ( )x t r x t= +    r is an adjustable constant 

         2
( ) '( ) 2f x r x f x x= + =  

         0 ex x r=  =  −   

Thus, there are three possible fixed points;  

 r > 0    no fixed points 

 r = 0    one fixed point      xe = 0 

     r < 0    two fixed points     e ex r x r= − − = + −   
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The system’s behaviour can be considered in terms of the velocity 

vector field.  The system vector field is represented by a vector for 

the velocity at each position x. The arrow for the velocity vector at 

point x is to the right (+X direction) if 0x   and to the left (-X 

direction) if 0x  . So, the flow is to the right when 0x   and to the 

left when 0x  . At the points where 0x = , there are no flows and 

such points are called fixed points.  

 

r > 0      there are no fixed-points  

 

Fig. 1.1     If r > 0 then there are no fixed points  

2
0 0 flow to the rightx r x r x t x= +    → →+  
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r = 0 

              

2
0 0 '( 0) 0

(0) 0 ( ) 0 0

(0) 0 ( ) 0 0

(0) 0 ( ) 0

e er x x x f x

x x t t x

x x t t x

x x t t x

= = = = =

= =  → →

   → →

   → → +

     

  

 

  Fig, 1.2     Fixed point:  r = 0,  xe = 0.  

                   Blue dot is a stable fixed point (negative slope) 

                   Red dot is an unstable fixed point (positive slope). 
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r < 0 

There are two fixed points 

                2 2
( ) '( ) 2x r x f x r x f x x= + = + =  

                '( ) 0e ex r f x= − −        stable 

                 '( ) 0e ex r f x= + −       unstable 

Let r = -16 then the two fixed points are xe = -4 (stable) and xe = +4 

(unstable).  

 

This is a very simple system but its dynamics is highly interesting. 

The bifurcation in the dynamics occurred at r = 0 (bifurcation point), 

since the vector fields for r < 0 and r > 0 qualitatively different. 
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Fig. 1.3   Stable fixed point xe = -4 (blue dot, negative slope)  

               Unstable fixed point xe = +4 (red dot, positive slope) 

                 (0) 4 ( )x t x t →  →  

                 (0) 4 ( ) 4x t x t →  →−  

                  (0) 4 ( ) 4x t x t= →  =  

 

  



8 
 

Figure 1.4 shows the bifurcation diagram for the fixed points xe as a 

function of the bifurcation parameter r.  

 

Fig. 1.4   Saddle node bifurcation diagram. The two fixed points for 

r < 0 merge as r goes to zero. 

 

This is an example of a subcritical saddle node bifurcation since the 

fixed points exist for values of the parameter below the bifurcation 

point r = 0. r = 0, xe = 0 is called the saddle node bifurcation point. 

 

Start with a large negative r value. Then as r approaches zero, the two 

fixed points get closer together and at r = 0 the two fixed points 

coalesces and annihilate each other and as r becomes greater than 

zero, there are no longer any fixed points. 

 

Sometimes a saddle node bifurcation is called a fold, or turning point, 

or blue-sky bifurcation. 
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Example 2     SUPERCRITICAL SADDLE NODE BIFURCATION   

                                cs100super.py 

2
( ) ( )x t r x t= −    r is an adjustable constant 

         2
( ) '( ) 2f x r x f x x= − = −  

         0 ex x r=  =    

Thus, there are three possible fixed points;  

 r < 0    no fixed points 

 r = 0    one fixed point      xe = 0 

     r > 0    two fixed points     e ex r x r= − = +   

 

 

r < 0      there are no fixed-points  

 

Fig. 2.1     If r < 0 then there are no fixed points. The flow is always 

to the left  ( )t x t→ → .     
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r = 0 

              

2 2
0 ( ) '( ) 2

0 '( 0) 0

(0) 0 ( ) 0 0

(0) 0 ( ) 0

(0) 0 ( ) 0 0

e e

r x x f x x f x x

x f x

x x t t x

x x t t x

x x t t x

= = − = − = −

= = =

= =  → =

   → → −

   → →

     

   

   

Fig, 2.2     Fixed point:  r = 0,  xe = 0.  

                   Blue dot is a stable fixed point (negative slope) 

                   Red dot is an unstable fixed point (positive slope). 
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r > 0 

There are two fixed points 

                2 2
( ) '( ) 2x r x f x r x f x x= − = − = −  

                '( ) 0e ex r f x= −        stable 

                 '( ) 0e ex r f x= +       unstable 

Let r = 16 then the two fixed points are xe = 4 (stable) and xe = -4 

(unstable).  
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Fig. 2.3   Stable fixed point xe = 4 (blue dot, negative slope)  

               Unstable fixed point xe = -4 (red dot, positive slope) 

                 (0) 4 ( ) 4x t x t →  →  

                  4 (0) 4 ( ) 4x t x t−   →  →  

                 (0) 4 ( )x t x t − →  →−  

 

 

Figure 2.4 shows the bifurcation diagram for the fixed points xe as a 

function of the bifurcation parameter r.  

 

Fig. 2.4   Saddle node bifurcation diagram. The two fixed points for 

r > 0 merge as r goes to zero. 

 

This is an example of a supercritical saddle node bifurcation since 

the fixed points exist for values of the parameter above the bifurcation 

point r = 0. 
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The normal form for a subcritical bifurcation is 2
( ) ( )x t r x t= +  

Other ODEs in a local neighbourhood can also be considered as a 

saddle node bifurcation. For example, 

 x
x r x e

−
= − −  

where r is the bifurcation parameter and the bifurcation point is r =1. 

The function x vs x  is plotted using the Python code cs101B.py. 

 

When the slope at a fixed point is positive, the flow is to the right → , 

and when negative, the flow is to the left  . So, near a stable fixed 

point, the flow is always towards it, and always away from an 

unstable fixed point.  

Decreasing the r value: 

 1r      two distinct fixed points (stable and unstable). 

 r = 1    fixed points merge to give a single saddle node fixed 

                  point 

     r < 1     the fixed points are annihilated. 
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Increasing the r value: 

 r < 1       no fixed points exist. 

     r = 1       a fixed point is created as a single saddle node fixed 

                    point 

    r > 1        two distinct fixed points created (stable and unstable). 
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