DOING PHYSICS WITH PYTHON

DYNAMICAL SYSTEMS [1D] Transcritical Bifurcations

Ian Cooper

matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORIES FOR PYTHON CODE

Google drive

GitHub

cs101.py cs101A.py

Jason Bramburger

Transcritical Bifurcations - Dynamical Systems | Lecture 7

https://www.youtube.com/watch?v=m5vmc HxMFs&t=3s

INTRODUCTION

This lecture focuses on transcritical bifurcations. These bifurcations are characterized by two fixed points colliding and exchanging stability. Unlike saddle-node bifurcations, no fixed points are created or destroyed over the course of the bifurcation.

The [1D] nonlinear system's ODE can be expressed as

$$\dot{x}(t) = f(x(t), r)$$

and the fixed points of the system are

$$f(x_e(t),r) = 0$$

where r is the bifurcation parameter. So, the fixed points x_e and their stability depends upon the bifurcation parameter.

A transcritical bifurcation occurs when there is an exchange of stabilities between two fixed points. The **normal form** for a **transcritical bifurcation** is given by

$$\dot{x}(t) = rx(t) - x(t)^2$$
 r is an adjustable constant
$$f(x) = rx - x^2$$
 $f'(x) = r - 2x$

$$r = 0$$

$$\dot{x} = -x^2 \Rightarrow x_e = 0$$
 $f(x) = -x^2$ $f'(x_e) = -2x_e = 0 \Rightarrow$

System has only **one** equilibrium point at $x_e = 0$ and its stability is inconclusive from $f'(x_e) = 0$.

The flow is always in a negative sense (towards the left)

$$x < 0 \Rightarrow \dot{x} < 0 \Rightarrow t \to \infty \quad x \to -\infty$$
$$x > 0 \Rightarrow \dot{x} < 0 \Rightarrow t \to \infty \quad x \to x_e = 0$$

The equilibrium points $x_e = 0$ is an unstable saddle point.

$$r = 0$$
 $x_e = 0$

For $r \neq 0$, there are two distinct equilibrium, $x_e = 0$ and $x_e = r$.

r < 0

$$\dot{x}\big|_{x_e} = r x_e - x_e^2 = 0$$
 $f'(x_e) = r - 2x_e$
 $x_e = 0$ $f'(x_e) = f'(0) = r < 0 \implies$

equilibrium point at the Origin $x_e = 0$ is **stable** (sink).

$$x_e = r$$
 $f'(x_e) = f'(r) = -r > 0 \implies$

equilibrium point $x_e = r$ is **unstable** (source).

$$r = -10$$
 $x_e = -10$ $x_e = 0$

equilibrium point $x_e = 0$ is **stable** (sink)

equilibrium point $x_e = r$ is **unstable** (source).

r > 0

$$\dot{x}|_{x_e} = r x_e - x_e^2 = 0$$
 $f'(x_e) = r - 2x_e$

$$x_e = 0$$
 $f'(x_e) = f'(0) = r > 0 \implies$

equilibrium point at the Origin $x_e = 0$ is unstable (source).

$$x_e = r$$
 $f'(x_e) = f'(r) = -r < 0 \implies$

equilibrium point $x_e = -10$ is **stable** (sink).

equilibrium point $x_e = 10$ is **stable** (sink)

equilibrium point $x_e = 0$ is **unstable** (source).

As r increases from -10 to 0 to 10, the two fixed points move towards each other, at r = 0, they merge and then for r > 0 they separate again with exchanged stabilities. The transcritical bifurcation point is r = 0.

This type of bifurcation diagram is known as a transcritical bifurcation. In this bifurcation, an exchange of stabilities has taken place between the two fixed points of the system.

Other ODEs can be reduced to the normal form of a transcritical bifurcation in a local region. As an example, consider the ODE

$$\dot{x} = (1-x)x - a\left(1 - e^{-bx}\right)$$

Then in the locality of ab = 1, this ODE approximates the normal form of the trancritical bifurcation $\dot{x} = rx - x^2$.

A plot of \dot{x} vs x tells us all we need to know about the trajectories of the flow when $ab \sim 1$. Let b=1 and a be the bifurcation parameter with values 0.9 (ab=0.9), 1.0 (ab=1.0), and a=1.1 (ab=1.1) as shown in the following plots.

When the slope at a fixed point is positive, the flow is to the right \rightarrow , and when negative, the flow is to the left \leftarrow . So, near a **stable fixed point**, the flow is always towards it, and always away from an **unstable fixed point**. **cs101A.py**

Reference

https://math.libretexts.org/Bookshelves/Scientific Computing Simulations and Modeling/Scientific Computing (Chasnov)/II%3A Dynamical Systems and Chaos/12%3A Concepts and Tools