DOING PHYSICS WITH PYTHON

DYNAMICAL SYSTEMS [1D] Pitchfork Bifurcations

Ian Cooper

matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORIES FOR PYTHON CODE

Google drive

GitHub

cs103.py cs104.py cs105.py

Jason Bramburger

Pitchfork Bifurcations - Dynamical Systems | Lecture 8

https://www.youtube.com/watch?v=rkXHEsn-DQ4

INTRODUCTION

This lecture focuses on pitchfork bifurcations. A pitchfork bifurcation is a particular type of local bifurcation (possible in dynamical systems) that has symmetry. In such cases, equilibrium points appear and disappear in symmetrical pairs. The bifurcation diagram looks like a pitchfork, hence the name pitchfork bifurcation. There are two

types of pitchfork bifurcations, namely supercritical and subcritical. A pitchfork bifurcation is called supercritical if a stable solution branch bifurcates into two new stable branches as the parameter r is increased. It is called subcritical if two unstable and one stable equilibria collapse to produce one stable one.

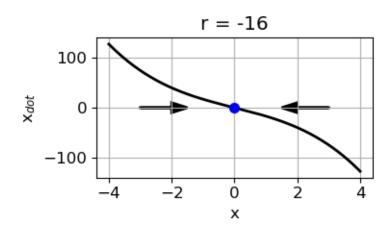
Example 1 Supercritical pitchfork bifurcation cs103.py

$$\dot{x}(t) = rx(t) - x(t)^3$$
 r is an adjustable constant
$$f(x,r) = rx - x^3$$
 $f'(x,r) = r - 3x^2$

The system is invariant under the transformation

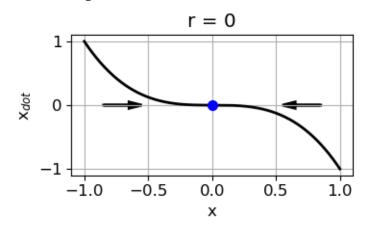
$$x \to -x$$
 $r(-x) - (-x)^3 = -(rx - x^3) = -\ddot{x}$

r < 0 one fixed point $x_e = 0$



$$r < 0$$
 $\dot{x} = 0 \Rightarrow x_e = 0$ $f'(0) < 0$ stable $x(0) < 0$ $t \to \infty$ $x(t) \to 0$ $x(0) > 0$ $t \to \infty$ $x(t) \to 0$

r = 0 one stable fixed point $x_e = 0$



$$r = 0$$
 $\dot{x} = 0 \Rightarrow x_e = 0$ $f'(0) = 0$ stable

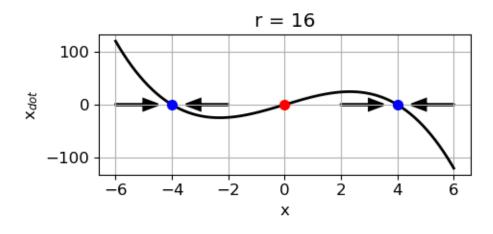
$$x(0) < 0 \quad t \to \infty \quad x(t) \to 0$$

$$x(0) > 0$$
 $t \to \infty$ $x(t) \to 0$

r > 0 three fixed points

$$\dot{x} = 0$$
 $x_e = 0$ $f'(0) = r > 0$ unstable

$$\dot{x} = 0$$
 $x_e = \pm \sqrt{r}$ $f'(\pm \sqrt{r}) = -2r < 0$ stable

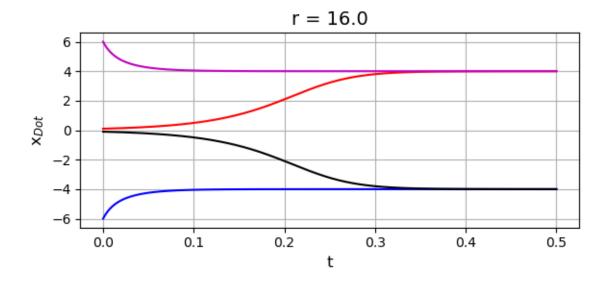


$$x(0) < -4 \quad t \to \infty \quad x(t) \to -4$$

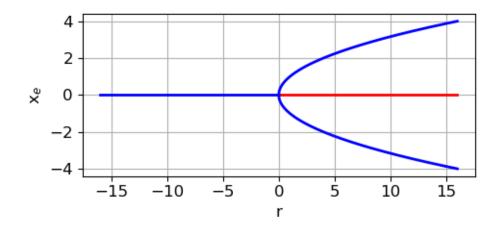
$$-4 < x(0) < 0 \quad t \to \infty \quad x(t) \to -4$$

$$0 < x(0) < 4 \quad t \to \infty \quad x(t) \to +4$$

$$x(0) > 4 \quad t \to \infty \quad x(t) \to +4$$



Time evolution of the flow for different initial conditions when r = 16 .0 > 0.



Supercritical pitchfork bifurcation

r = 0 one fixed point: $x_e = 0$ stable

r < 0 one fixed point: $x_e = 0$ stable

r > 0 three fixed points: $x_e = 0$ unstable

 $x_e = \pm \sqrt{r}$ stable

The pitchfork bifurcations occur when one fixed point becomes three at the bifurcation point. Pitchfork bifurcations are usually associated with the physical phenomena called symmetry breaking. For the **supercritical pitchfork bifurcation**, the stability of the original fixed point changes from stable to unstable and a new pair of stable fixed points are created above and below the bifurcation point.

From the pitchfork-shape bifurcation diagram, the name 'pitchfork' becomes clear. But it is basically a pitchfork trifurcation of the system. The bifurcation for this vector field is called a supercritical pitchfork bifurcation, in which a stable equilibrium bifurcates into two stable equilibria.

Example 2 Subcritical pitchfork bifurcation cs104.py

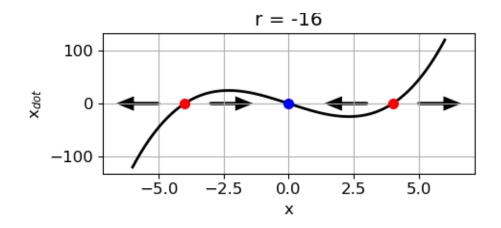
The transformation $x \to -x$, gives the subcritical pitchfork bifurcation $(\ddot{x} = rx + x^3)$ as shown in the following example.

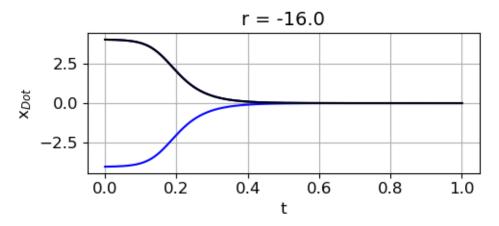
$$\dot{x}(t) = rx(t) + x(t)^3$$
 r is an adjustable constant
$$f(x) = rx + x^3 \quad f'(x) = r + 3x^2$$

r < 0 three fixed points

$$\dot{x} = 0$$
 $x_e = 0$ $f'(0) = r < 0$ **stable**

$$r < 0$$
 $\dot{x} = 0$ $x_{\rho} = \pm \sqrt{-r}$ $f'(\pm \sqrt{-r}) = -2r > 0$ unstable





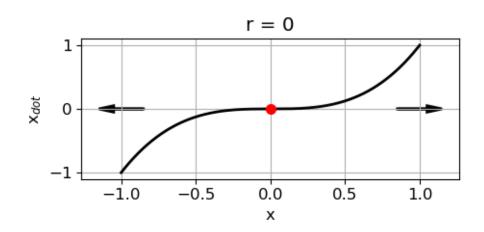
$$x(0) = 3.99$$
 and $x(0) = -3.99$

r = 0 one fixed point

$$\dot{x} = 0 \Rightarrow x_e = 0$$
 $f'(0) = 0$ unstable

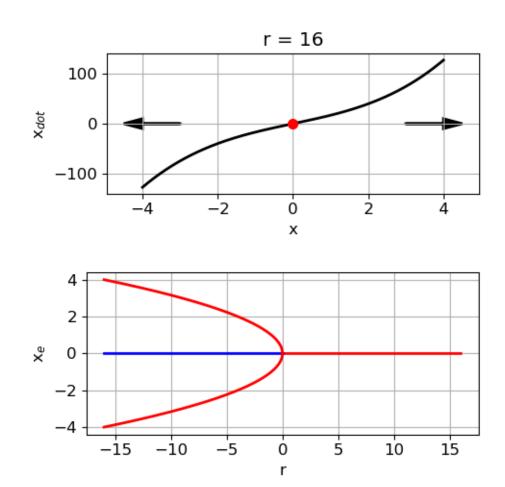
$$x(0) < 0$$
 $\dot{x}(0) < 0$ $t \to \infty$ $x(t) \to -\infty$

$$x(0) > 0$$
 $\dot{x}(0) > 0$ $t \to \infty$ $x(t) \to +\infty$

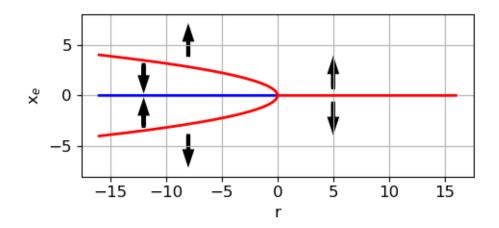


r > 0 one fixed point

$$\dot{x} = 0 \Rightarrow x_e = 0$$
 $f'(0) = r > 0$ unstable



Bifurcation diagram: bifurcation parameter is r and the bifurcation point is r = 0.



Bifurcation diagram and flow along the line: the flow is aways directed towards a stable fixed point and away from an unstable fixed point.

$$x_e = 0$$
 is unstable for $r \ge 0$ $\leftarrow x_e \rightarrow$

$$x_e = 0$$
 is stable for $r < 0$ $\rightarrow x_e \leftarrow$

$$x_e \neq 0$$
 is unstable for $r < 0 \qquad \leftarrow x_e \rightarrow$

Example 3
$$\dot{x}(t) = rx(t) + x(t)^3 - x(t)^5$$
 cs105.py $\dot{x} = rx + x^3 - x^5$ *r* is an adjustable constant $f(x) = rx + x^3 - x^5$ $f'(x) = r + 3x^2 - 5x^4$

$$\dot{x} = 0 \implies x_e \left(r + x_e^2 - x_e^4 \right) = 0$$

$$x_e = 0 - x_e^4 + x_e^2 + r = 0$$

$$+ z^2 - z - r = 0 \qquad z = x_e^2$$

$$z = \frac{1}{2} \left(1 \pm \sqrt{1 + 4r} \right)$$

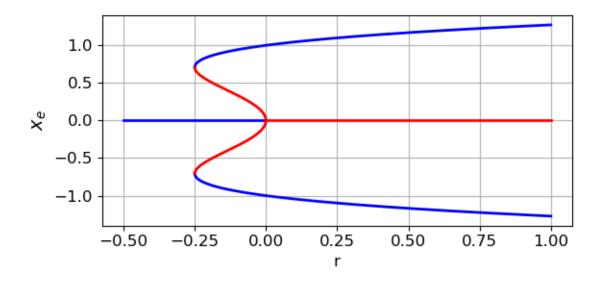
$$x_e = \pm \sqrt{\frac{1}{2} \left(1 \pm \sqrt{1 + 4r} \right)}$$

$$f'(x_e) = r + 3x_e^2 - 5x_e^4$$

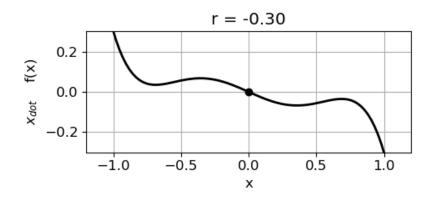
The bifurcation diagram shown below has in addition to a subcritical pitchfork bifurcation at the Origin, and two symmetric saddle node bifurcations that occur when r = -1/4. We can imagine what happens to the solution x(t) as r increases from negative values, assuming there is some noise in the system so that x(t) fluctuates around a stable fixed point. For r < -1/4, the solution x(t) fluctuates around the stable fixed point $x_e = 0$. As r increases into the range -1/4 < r < 0, the solution will remain close to the stable fixed point $x_e = 0$. However, a catastrophic event occurs as soon as r > 0. The fixed point $x_e = 0$ is lost and the solution will jump up or down to one of the fixed points. A similar catastrophe can happen as r decreases from positive values. In this case, the jump occurs as soon as r < -1/4

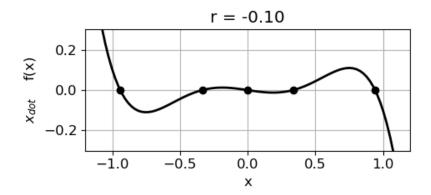
Since the behaviour of x(t) is different depending on whether we increase or decrease r, we say that the system exhibits **hysteresis**.

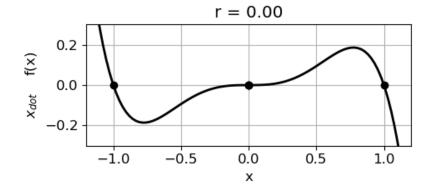
The existence of a subcritical pitchfork bifurcation can be very dangerous in engineering applications since a small change in the physical parameters of a problem can result in a large change in the equilibrium state. Physically, this can result in the collapse of a structure.

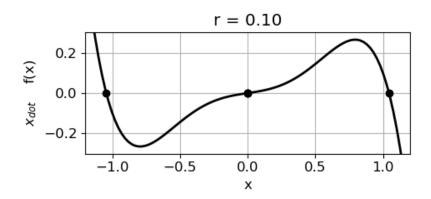


Subcritical pitchfork bifurcation at the Origin, and two symmetric saddle node bifurcations that occur when r = -1/4. In a local neighbourhood, the flow is always towards a stable fixed point and away from an unstable fixed point.

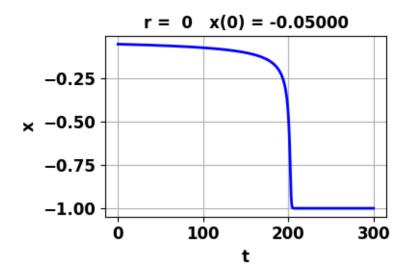


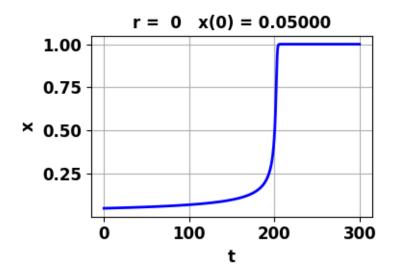




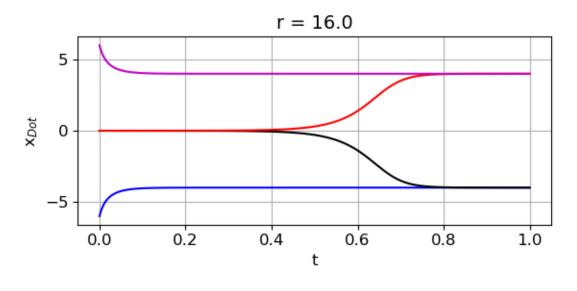


At a **fixed point**: negative slope → **stable**, positive slope → **unstable**





Slight differences in the initial conditions can lead to dramatic differences in the time evolution of the flow and steady state value for x.



$$x(0) = +6$$
 $x(0) = -6$ $x(0) = +0.00001$ $x(0) = -0.00001$

You see that our system is extremely sensitive to the initial conditions. Although the system is deterministic, the system is not completely predictable for initial conditions near $x_e = 0$. In this instance, you cannot make useful predictions since unmeasurable differences in the initial conditions lead to dramatically different outcomes.

⇒ butterfly effect

The idea that a mathematical equation gave you the power to predict how a system will behave is *dead – end of the Newtonian dream*.

Reference

https://math.libretexts.org/Bookshelves/Scientific Computing Simulations and Modeling/Scientific Computing (Chasnov)/II%3A Dynamical Systems and Chaos/12%3A Concepts and Tools