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INTRODUCTION 

Symmetry plays a critical role in pitchfork bifurcations. But what 

about when that symmetry is broken? The result is a kind of imperfect 

bifurcation. In this article, we study a specific example of an 

imperfect bifurcation, sometimes called a cusp bifurcation, and show 

what happens when the symmetry of a pitchfork is broken. The 

system under consideration has two parameters, one bifurcation 
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parameter and one imperfection parameter, resulting in a significant 

jump in complexity from the previously studied bifurcations. 

 

Example      3
x h r x x= + −  

(1)         3
x h r x x= + −   

where r is the bifurcation parameters and h is the imperfection 

parameter. 

 

When h = 0 we get the supercritical pitchfork bifurcation and when 

0h   there is a loss in symmetry. 

 

For [1D] system the most important point of interest are the location 

and stability of the fixed points. The fixed points xe can be found by 

solving the cubic equation using the Python function roots 

 

(2)           3
0 1,0, ,e ex r x h coefficients r h− + + = = −  

 coeff = [-1,0,r,h]      

          Z = np.roots(coeff) 

 

Only those values of Z where imaginary(Z) = 0 corresponds to a root 

of equation 2. 

 

The stability of a fixed point can be determined from: 
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For the plot x vs x , when the slope /
exdf dx at the fixed point xe is 

negative it is stable and when positive it is unstable (figure 2).  

 

We can find the fixed points xe by considering the relationships   

 (3A) 1 2y y=  

 (3B) 1y h= −  

 (3C) 3
2 e ey r x x= −  

The intersection of the cubic polynomial y2 and the horizontal straight 

lines y1 (figure 1) give the fixed points of the system. 

 

Fig. 1A.   If  0r   then there is only one fixed point which is the 

intersection of the two functions y1 and y2 for any h value. 
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Fig. 1B.   For r > 0, then there are three possibilities: 1 fixed point, 2 

fixed points or three fixed points. The cubic polynomial (equation 3C) 

is antisymmetric about x = 0 since 2 2x x y y→ −  → − . 

The straight lines are y1 = -h.  

rC = 27.00   hC = -54.00000    xC = 3.00 

rC = 27.00   hC = 54.00000     xC = -3.00 

        Critical values: two fixed points   27 3 54C Cr x h= = =  

 

To determine the number of fixed points when r > 0, we need to find 

the critical values of hC and rC at the turning points of the cubic 

function y2 where y1 = hC is tangential to y2. For the critical values 

there are two fixed points as shown in Fig. 1B (y1).   

 

 

The turning points (maximum and minimum) for the cubic function y2 

given by equation 3C are  
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(4A) 2
2 / 3 0 / 3 0C C Cdy dx r x x r r= − =  =    

and the height of the turning point hC is 

 3
C C C Ch r x x− = −  

 

(4B)           
3/2

2
3

C
C

r
h

 
=  

 
 

 

         Ch h                  one fixed point 

                              saddle node bifurcation (splitting of fixed point) 

 Ch h=                    two fixed points 

 Ch h                   three fixed point 
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We can find the fixed points and their stability from plots of x vs x  

 

Fig. 2A.    h = hC 

Critical values: two fixed points   27 3 54C Cr x h= = =  

The fixed point xe = -3 is marginally stable and xe = +6 is stable. 

 

 h = 53.999999      r = 27.00000  
 Number of fixed points = 3 
 xe = 6.000   stable      xe = -3.000   stable 
 xe = -3.000   unstable 
 
 

 

Fig. 2B.   h > hC 

 h = 80.0    r = 27.00000  
 Number of fixed points = 1 
 xe = 6.301   stable 
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Fig. 2C.     h < hC 

h = 20.0    r = 27.00000  
Number of fixed points = 3 

xe = 5.533   stable 

xe = -4.776   stable 

xe = -0.757   unstable 
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Plots in the (r, h) plane 

We can draw a cusp bifurcation diagram for the critical height hC as a 

function of r and h. 

 

Fig 3.   Parameter space cusp bifurcation diagram. The solid blue line 

gives the two fixed points for ( )
3/2

2 / 3Ch r=  .  The light shaded blue 

area is the region for 3 fixed points, and the white shaded area only 1 

fixed point exists for each value of r and h. The Origin (r = 0, hC = 0) 

is called the cusp point. Catastrophic events occur in the transitions 

between the number of fixed points as r or h change.    
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Bifurcation diagram   xe vs r (h = constant) 

 

Fig. 4A.   This is the standard super pitchfork bifurcation diagram 

when h = 0. The blue lines are the stable fixed points and the 

unstable fixed points are in red. 

 

 

Fig. 4B.  Imperfect pitchfork bifurcation 
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Fig. 4C.   Imperfect pitchfork bifurcation 

 

As r increases from -20 to 50, we see that we have one fixed point, 

then a saddle node bifurcation at the critical value of r to give two 

fixed points and then three fixed points. This is an example of an 

imperfect bifurcation diagram. 

 

Bifurcation diagram   xe vs h (r = constant) 

 

Fig. 5A.   Bifurcation diagram. When 0r   then there is only one 

stable fixed point for all h values. 
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Fig. 5B.   Bifurcation diagram. When r > 0 we get a S-shaped curve 

where there are one or two or three fixed points.  The system is 

bistable since there is competition between the two fixed point stable 

arms. The are two saddle node bifurcation for this system. 

 

Time evolution for the flow along the line 

By comparing a bifurcation diagram with a time evolution diagram, 

you see that for any initial condition, you can use the bifurcation 

diagram to predict the flow along the time since the flow is aways 

directed to towards a stable fixed point and away from an unstable 

fixed point (the flow can be to a fixed point or plus/minus infinity). 

The following graphs show the case when h = -10. 
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Fig. 6A.  The system evolves to the single fixed point xe = -0.922. 

h = -10.0    r = -10.00000  
x0 = -10.00, +10.00 
xEND = -0.922 
Number of fixed points = 1 
xe = -0.922   stable 
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h = -10.0    r = 8.78000  
cusp point: hC = -10.00   rC = 8.77205 
x0 = 5.00 
xEND = 1.769 
Number of fixed points = 3 
xe = -3.421   stable 
xe = 1.762   stable 
xe = 1.659   unstable 

 

 

h = -10.0    r = 8.77000  
cusp point: hC = -10.00   rC = 8.77205 
x0 = 5.00 
xEND = -3.420 
Number of fixed points = 1 
xe = -3.420   stable 

 

Fig. 6B. Time evolution of the flow. 



14 
 

For an initial conditions near the cusp point ( )10, 8.77205C Ch r= − =  

shows that the system response can be extremely sensitive to minute 

changes in a bifurcation parameter as the flow will converge to one or 

the other stable equilibrium point. This can make it impossible to 

predict the response of the system. 


