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Chaos 1s everywhere. It can crop up in unexpected places and in
remarkably simple systems, and a great deal of work has been done to
describe the behaviour of chaotic systems. A chaotic system is one
that must show sensitivity to initial conditions, it must be
topologically mixing, its orbits must be dense, and for a short time the
solutions will be nearly identical to one another and as time increases
the trajectories of the chaotic systems will suddenly have no
correlation with the other and solutions will diverge no matter how

small a change is made to the initial conditions. The idea of
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topological mixing implies that the system will evolve over time such
that every open set of its phase space will eventually intersect with
every other open region. The density of the orbits is also of
importance to prove that a system is acting chaotically. Orbits may

never come close to anything resembling repeating themselves.

As an example, we will consider the Lorenz System. This system is
one of the earlier examples of chaotic behaviour and was discovered
by Edward Lorenz in 1963, while working the dynamics of the
atmosphere. The Lorenz system is described by the set of ODEs

x=—s(x-y)
(1) y=rx—y—xz
z=xy—-bz

where s, r, b are the system constants and x, y, z are the state
variables. The r parameter will be considered as the bifurcation
parameter and the system response will be investigated as the value of

r 1s varied.

s > 0 is the Prandtl number and it represents the ratio of fluid viscosity
to thermal conductivity (ratio of how quickly fluid flows through the
system to how effective it absorbs heat in contact with other

molecules).



r > 0 1s the normalized Rayleigh number and it represents the
difference in temperature between the top and bottom of the

atmospheric column.

b > 0 depends upon the geometry of the domain and simply describes

the bounds of the system.

The most popular values for the parameters are:

s=10 r=28 b=8/3

Ed Lorenz derived this three-dimensional system from a drastically
simplified model of convection rolls in the atmosphere. Convection
rolls are organized, counter-rotating rolls of air that form in the
atmospheric boundary layer. They are formed when the ground is
heated, causing air to rise in updrafts and sink in downdrafts, and are
often visible from the ground as long lines of cumulus clouds parallel
to the low-level wind. These rolls play a significant role in

transporting heat, moisture, and momentum in the atmosphere.

Fig. 1. Convection rolls.



Lorenz discovered that this simple-looking deterministic system could
have extremely erratic dynamics over a wide range of parameters. The
solutions oscillate irregularly, never exactly repeating but always
remaining in a bounded region of phase space. When he plotted the
trajectories in three dimensions, he discovered that they settled onto a
complicated set, now called a strange attractor. Unlike stable fixed
points and limit cycles, the strange attractor is not a point or a curve
or even a surface—it’s a fractal, with a fractional dimension between
2 and 3. In this article, we’ll follow the beautiful chain of reasoning
that led Lorenz to his discoveries with the goal to get a feel for his

strange attractor and the chaotic motion that occurs on it.

Lorenz showed that in a certain range of parameters, there could be no
stable fixed points and no stable limit cycles, but showed that all
trajectories remain confined to a bounded region and are eventually
attracted to a set of zero volume where trajectories move on a strange

attractor with chaotic motion in phase space.

The Lorenz system is dissipative: volumes in phase space contract
under the flow exponentially fast. If we start with an enormous solid
blob of initial conditions, it eventually shrinks to a limiting set of zero
volume, like a balloon with the air being sucked out of it. All
trajectories starting in the blob end up somewhere in this limiting set
which consists of fixed points, limit cycles, or for some parameter

values a strange attractor. Volume contraction imposes strong



constraints on the possible solutions of the Lorenz equations. The

mathematics of showing this concept is not done.

It is impossible for the Lorenz system to have either repelling fixed
points or repelling closed orbits (all trajectories starting near the fixed
point or closed orbit are driven away from it). This is because
repellers are incompatible with volume contraction because they

are sources of volume - suppose we encase a repeller with

a closed surface of initial conditions nearby in phase space by
considering a small sphere around a fixed point, or a thin tube around
a closed orbit. A short time later, the surface will have expanded as
the corresponding trajectories are driven away. Thus, the volume
inside the surface would increase. This contradicts the fact that all
volumes contract. By a process of elimination, we conclude that all
fixed points must be sinks or saddles, and closed orbits (if they exist)

must be stable or saddle-like.

Fixed points

The Lorenz system given by equation 1 has two types of fixed points

(x,,¥,,z,). The Origin (0, 0, 0) 1s a fixed point for all values of the

parameters. If » <1 then the only fixed point is the Origin (0 ,0, 0) and

the Origin is a global attractor and the motion freezes at the Origin.



For » > 1, there is also an additional symmetric pair of fixed points
known as C" and C™ because of the symmetry

X—>—x, y—> -y, z——z = gives the same system equations

In other words, because of the symmetry, all solutions are either

symmetric themselves, or have a symmetric partner.

r>1
x nullcline x=0 = y,=x,
y nullcline y=0 = z,=r-1

z nullcline 2=0 = z,=x"/b= x,=+b(r-1)

C" x,=+b(r=1) y,=+yb(r-1 z,=r-1
C™ x,=—yb(r=1) y,==\b(r-1) z,=r-1

They represent steady state left or right turning convection rolls
(figure 1). As r - 17, C"and C  coalesce with the Origin in a

pitchfork bifurcation.

There is a change in the number of fixed points as » increases through
r=1. So, r =1 is a bifurcation point because of the change in the

nature of the solutions x(#), y(¢) and z(z).



Stability of the fixed points

Finding the eigenvalues of the Jacobian matrix J can help determine

the stability of the fixed points (x,,y,,z,).

of /lox of /dy of/oz
J(x,,y,,z,)=|0g/0x 0Og/oy 0Og/oz

ohlox oh/dy ohléz) |

—S S 0
J(x,,y,,z,)=|r-z, -1 -x

Y X, b

For the fixed point at the Origin (0, 0, 0)

-s s 0
J(0,0,0)=| » 0 O
0O 0 -b

The eigenvalues of the Jacobian J are found using the Python function
eig. Figure 2 shows the values of the three eigenvalues as a function

of the bifurcation parameter » for the fixed point at the Origin (0,0,0).
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Fig. 2. The three eigenvalues of the Jacobian J as a function of the
bifurcation parameter for the fixed point at the Origin (0,0,0).

For r <1 all three eigenvalues are negative. All directions are
incoming and the Origin is a stable node (sink). However, when

r> 1, we have two negative eigenvalues and one positive eigenvalue.
We now have two incoming directions and one outgoing direction.
So, the Origin is now a saddle node. As r crosses » = 1 we have a
pitchfork bifurcation as the Origin changes its stability from stable to

saddle and two new fixed points C* and C- are created.
For r <1, you can show that every trajectory approaches the Origin as
t — oo, thus the Origin is globally stable and there can be no limit

cycles or chaos (figure 3).

t >0 x(t)—>0, y(t)>0,z(1)—>0



Fig. 2A. r=0.8 < 1. The trajectories are attracted to the stable fixed
point, the Origin (0 ,0, 0). The plot clearly shows the contraction in
the phase space volume as all trajectories are pulled together at the

Origin.
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Fig. 2B. Time evolution of the state variables for » = 0.8 < 1.



Stability of C* and C

Forr>1

C" x,=+b(r=1) y,=+yb(r-1) z,=r-1
C™ x,=—\b(r-1) y,==yb(r-1) z,=r-1

Figure 3 shows the fixed points other than the Origin when » > 1.
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Fig. 3. Variation in the fixed points C* (xz1, yr1) and C (xz», ve2) as a
function of the bifurcation parameter 7.

For the stability of the two fixed points C" and C, the eigenvalues as
a function of r are computed from the Jacobian using the Python
function eig. The results of the computation are shown in figure 4.

The two fixed points have identical eigenvalues.
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Fixed points: C* C—
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Fig. 4. The three eigenvalues for the fixed points C* and C-.

From figure 4, you see that the two fixed points C" and C" are stable
when 1<r <ry (black vertical line, 7y = 24.76) since all three
eigenvalues are negative. But, when r > rg, two of the eigenvalues
become positive and the fixed points lose their stability. That is, C*

and C" lose stability in a subcritical Hopf bifurcation at r» = r4.

A linear analytical for the stability gives

_s(s+b+1)

s—b—1

=24.74

l<r<ry, 1y

So, our numerical estimate for 7y 1s in excellent agreement with the

analytical prediction.
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The fixed points C™ and C are stable when r < ry. However, the limit
cycles are unstable and exist only for 1 <r» <ry. The stable fixed
points are encircled by saddle cycles, a new type of unstable limit
cycle that 1s possible only in phase spaces of three or more

dimensions.

As r — r, from below, the cycle shrinks down around the fixed

point. (figure 5). At the Hopf bifurcation, the fixed point absorbs the
saddle cycle and changes into a saddle point. For » > ry there are no
attractors in the neighbourhood. So, for » > ry trajectories must fly
away to a distant attractor. But what can it be? Could it be that all
trajectories are repelled out to infinity? No! we can prove that all

trajectories eventually enter and remain in a certain large ellipsoid.

So, the trajectories must have a bizarre kind of long-term behaviour,
like balls in a pinball machine, they are repelled from one unstable
object after another. At the same time, they are confined to a bounded
set of zero volume, yet they manage to move on this set forever
without intersecting themselves or others. We can get out of this

conundrum as a result of strange attractors and chaos.

Figure 5 shows two trajectories with different initial conditions. Since
1 <r=20<ry=24.8 the two fixed points C" and C are stable and the
Origin 1s unstable. Depending upon the initial condition, a trajectory

will spiral inwards towards either C" or C".
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Fig. 5. 1<r<ry=24.74. The blue and red trajectories (different

initial conditions) are pulled to different fixed points C*" or C™ and
repelled from the Origin.



Bifurcation parameter r = 20.000

fixed points: xE= 7.118 yE=7.118 zE=19.000
xE=-7.118 yE=-7.118 zE =19.000

Eigenvalues:

lambdal =-13.357 + 0.000 j

lambda2 =-0.155 + 8.709 j

lambda3 =-0.155 +-8.709 j

Simulation time tS = 20.00

Initial conditions: x(0) =0.000 y(0) =-0.200 z(0) =-0.200

End points: xF =6.911 yF=6.810 zF=18.932

Initial conditions: x(0) =0.000 y(0) =0.200 z(0)=0.200

End points: xF =-6.928 yF=-6.794 zF=18.999

All the real parts of the three eigenvalues are negative, and so the
fixed points are stable.
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A very different behaviour of the Lorenz system occurs when

r>rg=24.74. An as example the case where r = 28 is considered.

Fig. 6A. r=28. The initial conditions are almost identical, the
difference being x(0) = 0.20 and x(0) = 0.21.

The trajectories for » > ry trace out a strange attractor and the motion
is chaotic. Although the motion 1s deterministic, it is not predictable.
It is impossible to predict with certainty the trajectory for long time
periods since we never know with one hundred percent certainty the
initial conditions as shown in figure 7. Thus, after an initial transient,
the solution settles into an irregular oscillation that persists as ¢ — oo,
but never repeats exactly. The motion is aperiodic. Figure 6A shows
the wonderful butterfly structure that emerges in the phase space plot
of the trajectory in phase space where there no self-intersections

occur.

15



r=28.00
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Fig. 6B. The initial conditions are almost identical, the difference
being x(0) = 0.20 and x(0) = 0.21. For ¢ < 18 the trajectories are
almost identical, but for # > 18 they become very different.

The trajectory starts near the initial position, then swings to the right,
and then dives into the centre of a spiral on the left. After a very slow
spiral outward, the trajectory shoots back over to the right side, spirals
around a few times, shoots over to the left, spirals around, and so on
indefinitely. The number of circuits made on either side varies
unpredictably from one cycle to the next. In fact, the sequence of the

number of circuits has many of the characteristics of a random

16



sequence. The trajectory appears to settle onto an exquisitely thin set
that looks like a pair of butterfly wings. This limiting set is the

attracting set of zero volume.

r=28.00

Fig. 6C. [2D] phase portraits.
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Figure 7 shows a bifurcation diagram with r as the bifurcation
parameter. The magenta curves are for the fixed points x. and the red

and blue dots are the final trajectory positions xr.
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Fig. 7. The initial conditions are (2.000, 2, 20) and (2.001,2,20). The
magenta lines are for the three fixed points (0,0,0), C* and C-.

For r <1, the Origin (0, 0, 0) is the only fixed point and is globally
stable. A supercritical pitchfork bifurcation occurs at » = 1.

The Origin (0, 0, 0) changes its stability and a symmetric pair of
attracting (stable) fixed points C* and C are created.

For 1 <r <ry both trajectories are almost identical since they have

almost identical initial x(0) values and for » < 1.9 they converge to the
fixed point C*. But at » = 1.9, there is a transition C* — C~ and then

at 7 = 9.5 the reverse transition occurs C~ — C".
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Fig. 8. The initial conditions are (2.00, 2.00, 20.0).

A homoclinic orbit lies in the intersection of the stable manifold and
the unstable manifold of an equilibrium. A homoclinic bifurcation
occurs when a limit cycle collides with a saddle point, producing

complicated, and possibly chaotic dynamics.

For the initial conditions (2.00, 2.00, 20.0) for the trajectories shown
in figure 8, we see that when » = 1.92 the trajectory approaches close
to the saddle node at the Origin and terminates at the C* fixed point.
When r is increment to » = 1.93, the trajectory is now repelled from
the saddle and the trajectory goes to the C- fixed point. Further
incrementing the  value leads to decaying orbits circulating around
the C- fixed point. When » = 9.3 and » = 9.4 the circulating trajectory
gets closer to the saddle node at the Origin. At » = 9.5 the unstable

limit cycle has grown such that it intersects with the saddle point at
20



the Origin leading to the trajectory now being attracted to the C™ fixed
point. This is called a homoclinic orbit. Hence, we have two
homoclinic bifurcations occurring at » = 1.93 and 9.5. Trajectories
rattle around chaotically for a while, but eventually escape and settle
down to C" or C". We get transient chaos and it shows that a
deterministic system can be unpredictable, even if its final states are

very simple

At rg = 24.74 the fixed points lose stability by absorbing an unstable
limit cycle in a subcritical Hopf bifurcation. For » > rg = 24.7, there
are three fixed points (0,0,0), C" and C". The trajectories fly off to a
strange attractor. A strange attractor is a set of states in a chaotic
dynamical system that is globally stable but locally unstable, meaning
it attracts points toward it but is also highly sensitive to initial
conditions, causing nearby points to diverge exponentially over time.
The system's behaviour is unpredictable in the short term but
statistically predictable in the long term, exhibiting a fractal structure
and often visualized as a complex, geometric shape like the famous

Lorenz attractor shown in figure 6.

Numerical simulations indicate that the system has a globally
attracting limit cycle for all » > 313. In figure 9 a plot of the solution

for » = 350 is shown where the trajectory approaches a limit cycle.
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Fig. 9. Solution of high values of the bifurcation parameter.
For » =350, the flow of the system is aperiodic and not chaotic.

The story becomes more complicated for 28 < <313. For most

values of 7 one finds chaos, but there are also small windows of

periodic behaviour interspersed. This alternating pattern of chaotic

and periodic regimes resembles that seen in the logistic map.

A large window exists in the range are 98 <r < 102 as shown in

figure 10.
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Fig. 10. Bifurcation diagram for » = 98 to » = 102. The flow 1s not

chaotic in the range 99.83 <r < 100.3.
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Defining Chaos

No definition of the term chaos is universally accepted yet, but almost

everyone would agree on:

Chaos 1s aperiodic long-term behaviour in a deterministic system that

exhibits sensitive dependence on initial conditions.

Aperiodic long-term behaviour means that there are trajectories
which do not settle down to fixed points, periodic orbits, or

quasiperiodic orbits as ¢ — .

Deterministic means that the system has no random or noisy
inputs or parameters. The irregular behaviour arises from the system’s

nonlinearity, rather than from noisy driving forces.
Sensitive dependence on initial conditions means that nearby

trajectories separate exponentially fast, i.e., the system has a positive

Lyapunov exponent.
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