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Chaos is everywhere. It can crop up in unexpected places and in 

remarkably simple systems, and a great deal of work has been done to 

describe the behaviour of chaotic systems. A chaotic system is one 

that must show sensitivity to initial conditions, it must be 

topologically mixing, its orbits must be dense, and for a short time the 

solutions will be nearly identical to one another and as time increases 

the trajectories of the chaotic systems will suddenly have no 

correlation with the other and solutions will diverge no matter how 

small a change is made to the initial conditions. The idea of 
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topological mixing implies that the system will evolve over time such 

that every open set of its phase space will eventually intersect with 

every other open region. The density of the orbits is also of 

importance to prove that a system is acting chaotically. Orbits may 

never come close to anything resembling repeating themselves.  

 

As an example, we will consider the Lorenz System. This system is 

one of the earlier examples of chaotic behaviour and was discovered 

by Edward Lorenz in 1963, while working the dynamics of the 

atmosphere. The Lorenz system is described by the set of ODEs  
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where s, r, b are the system constants and x, y, z are the state 

variables. The r parameter will be considered as the bifurcation 

parameter and the system response will be investigated as the value of 

r is varied.  

 

s > 0 is the Prandtl number and it represents the ratio of fluid viscosity 

to thermal conductivity (ratio of how quickly fluid flows through the 

system to how effective it absorbs heat in contact with other 

molecules). 
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r > 0 is the normalized Rayleigh number and it represents the 

difference in temperature between the top and bottom of the 

atmospheric column. 

 

b > 0 depends upon the geometry of the domain and simply describes 

the bounds of the system. 

 

The most popular values for the parameters are: 

                s = 10     r = 28     b = 8/3          

 

Ed Lorenz derived this three-dimensional system from a drastically 

simplified model of convection rolls in the atmosphere. Convection 

rolls are organized, counter-rotating rolls of air that form in the 

atmospheric boundary layer. They are formed when the ground is 

heated, causing air to rise in updrafts and sink in downdrafts, and are 

often visible from the ground as long lines of cumulus clouds parallel 

to the low-level wind. These rolls play a significant role in 

transporting heat, moisture, and momentum in the atmosphere.  

 

Fig. 1. Convection rolls. 
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Lorenz discovered that this simple-looking deterministic system could 

have extremely erratic dynamics over a wide range of parameters. The 

solutions oscillate irregularly, never exactly repeating but always 

remaining in a bounded region of phase space. When he plotted the 

trajectories in three dimensions, he discovered that they settled onto a 

complicated set, now called a strange attractor. Unlike stable fixed 

points and limit cycles, the strange attractor is not a point or a curve 

or even a surface—it’s a fractal, with a fractional dimension between 

2 and 3. In this article, we’ll follow the beautiful chain of reasoning 

that led Lorenz to his discoveries with the goal to get a feel for his 

strange attractor and the chaotic motion that occurs on it. 

 

Lorenz showed that in a certain range of parameters, there could be no 

stable fixed points and no stable limit cycles, but showed that all 

trajectories remain confined to a bounded region and are eventually 

attracted to a set of zero volume where trajectories move on a strange 

attractor with chaotic motion in phase space. 

 

The Lorenz system is dissipative: volumes in phase space contract 

under the flow exponentially fast. If we start with an enormous solid 

blob of initial conditions, it eventually shrinks to a limiting set of zero 

volume, like a balloon with the air being sucked out of it. All 

trajectories starting in the blob end up somewhere in this limiting set 

which consists of fixed points, limit cycles, or for some parameter 

values a strange attractor. Volume contraction imposes strong 
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constraints on the possible solutions of the Lorenz equations. The 

mathematics of showing this concept is not done. 

 

It is impossible for the Lorenz system to have either repelling fixed 

points or repelling closed orbits (all trajectories starting near the fixed 

point or closed orbit are driven away from it). This is because 

repellers are incompatible with volume contraction because they 

are sources of volume - suppose we encase a repeller with 

a closed surface of initial conditions nearby in phase space by 

considering a small sphere around a fixed point, or a thin tube around 

a closed orbit. A short time later, the surface will have expanded as 

the corresponding trajectories are driven away. Thus, the volume 

inside the surface would increase. This contradicts the fact that all 

volumes contract. By a process of elimination, we conclude that all 

fixed points must be sinks or saddles, and closed orbits (if they exist) 

must be stable or saddle-like. 

 

Fixed points 

The Lorenz system given by equation 1 has two types of fixed points 

( , , )e e ex y z . The Origin (0, 0, 0) is a fixed point for all values of the 

parameters. If 1r   then the only fixed point is the Origin (0 ,0, 0) and 

the Origin is a global attractor and the motion freezes at the Origin. 
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For r > 1, there is also an additional symmetric pair of fixed points 

known as C+ and C-  because of the symmetry 

   , ,x x y y z z→ − → − → −   gives the same system equations 

 

In other words, because of the symmetry, all solutions are either 

symmetric themselves, or have a symmetric partner. 

  

r > 1 

     x nullcline          0 e ex y x=  =  

     y nullcline         0 1ey z r=  = −  

     z nullcline          2
0 / ( 1)e e ez z x b x b r=  =  =  −  
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They represent steady state left or right turning convection rolls 

(figure 1). As 1r
+

→ , C+ and C
–

 coalesce with the Origin in a 

pitchfork bifurcation. 

 

There is a change in the number of fixed points as r increases through 

r = 1. So, r = 1 is a bifurcation point because of the change in the 

nature of the solutions x(t), y(t) and z(t).  
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Stability of the fixed points  

Finding the eigenvalues of the Jacobian matrix J can help determine 

the stability of the fixed points ( , , )e e ex y z . 

( ), ,
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For the fixed point at the Origin (0, 0, 0)  

 

0
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0 0
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The eigenvalues of the Jacobian J are found using the Python function 

eig. Figure 2 shows the values of the three eigenvalues as a function 

of the bifurcation parameter r for the fixed point at the Origin (0,0,0). 
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Fig. 2.  The three eigenvalues of the Jacobian J as a function of the 

bifurcation parameter for the fixed point at the Origin (0,0,0). 

 

For r < 1 all three eigenvalues are negative. All directions are 

incoming and the Origin is a stable node (sink). However, when      

r > 1, we have two negative eigenvalues and one positive eigenvalue. 

We now have two incoming directions and one outgoing direction. 

So, the Origin is now a saddle node. As r crosses r = 1 we have a 

pitchfork bifurcation as the Origin changes its stability from stable to 

saddle and two new fixed points C+ and C- are created. 

 

For r < 1, you can show that every trajectory approaches the Origin as 

t → , thus the Origin is globally stable and there can be no limit 

cycles or chaos (figure 3).   

 

( ) 0, ( ) 0, ( ) 0t x t y t z t→ → → →  
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Fig. 2A.  r = 0.8 < 1. The trajectories are attracted to the stable fixed 

point, the Origin (0 ,0, 0). The plot clearly shows the contraction in 

the phase space volume as all trajectories are pulled together at the 

Origin. 

 

Fig. 2B.  Time evolution of the state variables for r = 0.8 < 1. 
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Stability of C+ and C– 

For r > 1 

( 1) ( 1) 1

( 1) ( 1) 1

e e e

e e e

C x b r y b r z r

C x b r y b r z r

+

−

= + − = + − = −

= − − = − − = −
 

 

Figure 3 shows the fixed points other than the Origin when r > 1. 

 

 

Fig. 3. Variation in the fixed points C+ (xE1, yE1) and C-
 (xE2, yE2) as a 

function of the bifurcation parameter r.   

 

For the stability of the two fixed points C+ and C-, the eigenvalues as 

a function of r are computed from the Jacobian using the Python 

function eig. The results of the computation are shown in figure 4. 

The two fixed points have identical eigenvalues. 
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Fig. 4.  The three eigenvalues for the fixed points C+ and C-. 

 

From figure 4, you see that the two fixed points C+ and C- are stable 

when 1< r < rH  (black vertical line, rH = 24.76) since all three 

eigenvalues are negative. But, when r > rH, two of the eigenvalues 

become positive and the fixed points lose their stability. That is, C+ 

and C- lose stability in a subcritical Hopf bifurcation at r = rH. 

 

A linear analytical for the stability gives 

 
( 1)

1 24.74
1

H H

s s b
r r r

s b

+ +
  = =

− −
 

So, our numerical estimate for rH is in excellent agreement with the 

analytical prediction. 
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The fixed points C+ and C- are stable when r < rH. However, the limit 

cycles are unstable and exist only for 1 < r < rH.  The stable fixed 

points are encircled by saddle cycles, a new type of unstable limit 

cycle that is possible only in phase spaces of three or more 

dimensions.  

 

As Hr r→  from below, the cycle shrinks down around the fixed 

point. (figure 5). At the Hopf bifurcation, the fixed point absorbs the 

saddle cycle and changes into a saddle point. For r > rH there are no 

attractors in the neighbourhood. So, for r > rH trajectories must fly 

away to a distant attractor. But what can it be? Could it be that all 

trajectories are repelled out to infinity? No! we can prove that all 

trajectories eventually enter and remain in a certain large ellipsoid. 

So, the trajectories must have a bizarre kind of long-term behaviour, 

like balls in a pinball machine, they are repelled from one unstable 

object after another. At the same time, they are confined to a bounded 

set of zero volume, yet they manage to move on this set forever 

without intersecting themselves or others. We can get out of this 

conundrum as a result of strange attractors and chaos. 

 

Figure 5 shows two trajectories with different initial conditions. Since 

1 < r =20 < rH = 24.8 the two fixed points C+ and C
- are stable and the 

Origin is unstable. Depending upon the initial condition, a trajectory 

will spiral inwards towards either C+ or C
-
.  
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Fig. 5.   1 < r < rH = 24.74. The blue and red trajectories (different 

initial conditions) are pulled to different fixed points C+ or C
- and 

repelled from the Origin. 
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Bifurcation parameter r = 20.000 

fixed points: xE =  7.118     yE = 7.118     zE = 19.000 

                       xE = -7.118     yE = -7.118    zE = 19.000 

Eigenvalues: 

lambda1 = -13.357 + 0.000 j 

lambda2 = -0.155 + 8.709 j 

lambda3 = -0.155 + -8.709 j 

Simulation time tS = 20.00 

Initial conditions: x(0) = 0.000     y(0) = -0.200     z(0) = -0.200 

End points: xF = 6.911     yF = 6.810     zF = 18.932 

Initial conditions: x(0) = 0.000     y(0) = 0.200     z(0) = 0.200 

End points: xF = -6.928     yF = -6.794     zF = 18.999 

 

All the real parts of the three eigenvalues are negative, and so the 

fixed points are stable. 
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A very different behaviour of the Lorenz system occurs when 

r > rH = 24.74. An as example the case where r = 28 is considered.  

 

Fig. 6A.   r = 28. The initial conditions are almost identical, the 

difference being x(0) = 0.20 and x(0) = 0.21. 

 

The trajectories for r > rH trace out a strange attractor and the motion 

is chaotic. Although the motion is deterministic, it is not predictable. 

It is impossible to predict with certainty the trajectory for long time 

periods since we never know with one hundred percent certainty the 

initial conditions as shown in figure 7. Thus, after an initial transient, 

the solution settles into an irregular oscillation that persists as t → , 

but never repeats exactly. The motion is aperiodic. Figure 6A shows 

the wonderful butterfly structure that emerges in the phase space plot 

of the trajectory in phase space where there no self-intersections 

occur. 
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Fig. 6B.   The initial conditions are almost identical, the difference 

being x(0) = 0.20 and x(0) = 0.21. For t < 18 the trajectories are 

almost identical, but for t > 18 they become very different. 

 

The trajectory starts near the initial position, then swings to the right, 

and then dives into the centre of a spiral on the left. After a very slow 

spiral outward, the trajectory shoots back over to the right side, spirals 

around a few times, shoots over to the left, spirals around, and so on 

indefinitely. The number of circuits made on either side varies 

unpredictably from one cycle to the next. In fact, the sequence of the 

number of circuits has many of the characteristics of a random 
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sequence. The trajectory appears to settle onto an exquisitely thin set 

that looks like a pair of butterfly wings. This limiting set is the 

attracting set of zero volume. 

 

 

Fig. 6C.  [2D] phase portraits. 
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Figure 7 shows a bifurcation diagram with r as the bifurcation 

parameter.  The magenta curves are for the fixed points xe and the red 

and blue dots are the final trajectory positions xF. 

 

Fig. 7. The initial conditions are (2.000, 2, 20) and (2.001,2,20). The 

magenta lines are for the three fixed points (0,0,0), C+ and C-.  

 

For r < 1, the Origin (0, 0, 0) is the only fixed point and is globally 

stable. A supercritical pitchfork bifurcation occurs at r = 1.  

The Origin (0, 0, 0) changes its stability and a symmetric pair of 

attracting (stable) fixed points C+ and C- are created. 

 

For 1 < r < rH  both trajectories are almost identical since they have 

almost identical initial x(0) values and for r < 1.9 they converge to the 

fixed point C+. But at r = 1.9, there is a transition C C
+ −
→  and then 

at r = 9.5 the reverse transition occurs C C
− +
→ . 
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Fig. 8. The initial conditions are (2.00, 2.00, 20.0).  

 

A homoclinic orbit lies in the intersection of the stable manifold and 

the unstable manifold of an equilibrium. A homoclinic bifurcation 

occurs when a limit cycle collides with a saddle point, producing 

complicated, and possibly chaotic dynamics.  

 

For the initial conditions (2.00, 2.00, 20.0) for the trajectories shown 

in figure 8, we see that when r = 1.92 the trajectory approaches close 

to the saddle node at the Origin and terminates at the C+ fixed point.  

When r is increment to r = 1.93, the trajectory is now repelled from 

the saddle and the trajectory goes to the C- fixed point. Further 

incrementing the r value leads to decaying orbits circulating around 

the C- fixed point. When r = 9.3 and r = 9.4 the circulating trajectory 

gets closer to the saddle node at the Origin. At r = 9.5 the unstable 

limit cycle has grown such that it intersects with the saddle point at 
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the Origin leading to the trajectory now being attracted to the C+ fixed 

point. This is called a homoclinic orbit.  Hence, we have two 

homoclinic bifurcations occurring at r = 1.93 and 9.5. Trajectories 

rattle around chaotically for a while, but eventually escape and settle 

down to C+ or C-. We get transient chaos and it shows that a 

deterministic system can be unpredictable, even if its final states are 

very simple 

 

At rH = 24.74 the fixed points lose stability by absorbing an unstable 

limit cycle in a subcritical Hopf bifurcation. For r > rH = 24.7, there 

are three fixed points (0,0,0), C+ and C-. The trajectories fly off to a 

strange attractor. A strange attractor is a set of states in a chaotic 

dynamical system that is globally stable but locally unstable, meaning 

it attracts points toward it but is also highly sensitive to initial 

conditions, causing nearby points to diverge exponentially over time. 

The system's behaviour is unpredictable in the short term but 

statistically predictable in the long term, exhibiting a fractal structure 

and often visualized as a complex, geometric shape like the famous 

Lorenz attractor shown in figure 6.  

 

 

Numerical simulations indicate that the system has a globally 

attracting limit cycle for all r > 313. In figure 9 a plot of the solution 

for r = 350 is shown where the trajectory approaches a limit cycle.  
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Fig. 9. Solution of high values of the bifurcation parameter.  

For r = 350, the flow of the system is aperiodic and not chaotic. 

 

The story becomes more complicated for 28 < r < 313. For most 

values of r one finds chaos, but there are also small windows of 

periodic behaviour interspersed. This alternating pattern of chaotic 

and periodic regimes resembles that seen in the logistic map. 

A large window exists in the range are 98 < r < 102 as shown in 

figure 10. 

 

Fig. 10. Bifurcation diagram for r = 98 to r = 102. The flow is not 

chaotic in the range 99.83 < r < 100.3. 
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Defining Chaos 

No definition of the term chaos is universally accepted yet, but almost 

everyone would agree on: 

 

Chaos is aperiodic long-term behaviour in a deterministic system that 

exhibits sensitive dependence on initial conditions. 

 

Aperiodic long-term behaviour means that there are trajectories 

which do not settle down to fixed points, periodic orbits, or 

quasiperiodic orbits as t → .  

 

Deterministic means that the system has no random or noisy 

inputs or parameters. The irregular behaviour arises from the system’s 

nonlinearity, rather than from noisy driving forces. 

 

Sensitive dependence on initial conditions means that nearby 

trajectories separate exponentially fast, i.e., the system has a positive 

Lyapunov exponent. 
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