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INTRODUCTION 

To review many aspects of the behaviour of nonlinear systems, we 

will consider a number of examples of the solutions for nonlinear 

ordinary differential equation of the form 

                  ( ) /x f x x dx dt=   

The system will be in equilibrium at a fixed-point xe where 

                0 ( ) 0ex f x= =  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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When , ( ) 0e ex x f x= =   then xe often called a steady state solution. 

 

To analyse the stability, consider a small perturbation e(t) from an 

equilibrium position 

                x(t) = xe(t) + e(t) 

From a Taylor expansion, it can be shown that 

               '( )
( ) (0) ef x t

e t e e=  

If  '( ) 0ef x   then e(t) grows exponentially and if '( ) 0ef x  , then e(t) 

decays exponentially to zero. 

 

Thus, the stability of a fixed point is determined from the function 

( )'( ) '( ) /ef x f x df dx  

      

    Stable fixed point       '( ) 0ef x       where  ex x→           

        

    Marginally stable fixed point       '( ) 0ef x =   

                                        where  orex x x→ →            

     

    Unstable fixed point       '( ) 0ef x       where  x →           

 

The ODEs are solved using the Python function odeint. To reproduce 

the following plots, you need to change simulation parameters and 

comment/uncomment parts of the code.   
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Bifurcation means a structural change in the orbit of a system when a 

parameter is changed. The point where the bifurcation occurs is 

known as the bifurcation point. The orbit and the fixed point may 

change dramatically at bifurcation points as the character of an 

attractor or a repeller are altered. A graph of the parameter values 

versus the fixed points of the system is known as a bifurcation 

diagram.  

 

The [1D] nonlinear system’s ODE can be expressed as 

              ( )( ) ( ),x t f x t r=  

and the fixed points of the system are 

              ( )( ), 0ef x t r =  

where r is the bifurcation parameter. So, the fixed points and their 

stability depends upon the bifurcation parameter. 

 

Using a number of examples, three important bifurcations, namely the 

saddle node, pitchfork, and transcritical bifurcations are discussed. 

for [1D] systems. 
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Example 1             SADDLE NODE BIFURCATION   cs100.py 

2
( ) ( )x t r x t= +    r is an adjustable constant 

         2
( ) '( ) 2f x r x f x x= + =  

         0 0 ande ex x x r=  = =  −   

Thus, there are three possible fixed points;  

 r > 0    no fixed points 

 r = 0    one fixed point      xe = 0 

     r < 0    two fixed points     e ex r x r= − − = + −   

 

The system’s behaviour can be considered in terms of the velocity 

vector field.  The system vector field is represented by a vector for 

the velocity at each position x. The arrow for the velocity vector at 

point x is to the right (+X direction) if 0x   and to the left (-X 

direction) if 0x  . So, the flow is to the right when 0x   and to the 

left when 0x  . At the points where 0x = , there are no flows and 

such points are called fixed points.  
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r > 0      there are no fixed-points  

 

Fig. 1.1     If r > 0 then there are no fixed points     

 

r = 0 

              

2
0 0 '( 0) 0

(0) 0 ( ) 0 0

(0) 0 ( ) 0 0

(0) 0 ( ) 0

e er x x x f x

x x t t x

x x t t x

x x t t x

= = = = =

= =  → →

   → →

   → → +
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  Fig, 1.2     Fixed point:  r = 0,  xe = 0.  

                   Blue dot is a stable fixed point (negative slope) 

                   Red dot is an unstable fixed point (positive slope). 

 

r < 0 

There are two fixed points 

                2 2
( ) '( ) 2x r x x f x r x x f x x= − = − =  

                '( ) 0e ex r f x= − −        stable 

                 '( ) 0e ex r f x= + −       unstable 
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Let r = -16 then the two fixed points are xe = -4 (stable) and xe = +4 

(unstable).  

 

This is a very simple system but its dynamics is highly interesting. 

The bifurcation in the dynamics occurred at r = 0 (bifurcation point), 

since the vector fields for r < 0 and r > 0 qualitatively different. 
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Fig. 1.3   Stable fixed point xe = -4 (blue dot, negative slope)  

               Unstable fixed point xe = +4 (red dot, positive slope) 

                 (0) 4 ( )x t x t →  →  

                 (0) 4 ( ) 4x t x t →  →−  
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Figure 1.4 shows the bifurcation diagram for the fixed points xe as a 

function of the bifurcation parameter r.  

 

Fig. 1.4   Saddle node bifurcation diagram. The two fixed points for 

r < 0 merge as r goes to zero. 

 

This is an example of a subcritical saddle node bifurcation since the 

fixed points exist for values of the parameter below the bifurcation 

point r < 0. 

 

If we were to consider the system 
2

x r x= −  than this would be an 

example of a supercritical saddle node bifurcation, since the 

equilibrium points exist for values of above the bifurcation point 

r  =  0 ( )0 er x r  =  .  
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Example 2         Transcritical bifurcation    cs101.py 

The transcritical bifurcation is one type of bifurcation in which the 

stability characteristics of the fixed points are changed for varying 

values of the parameters. 

2
( ) ( ) ( )x t r x t x t= −  r is an adjustable constant 

 2
( ) '( ) 2f x r x x f x r x= − = −  

r = 0 

( )2 2
0 ( ) ' 2 0e e ex x x f x x f x x= −  = = − = − =    

    System has only one equilibrium point at xe = 0 and its stability is 

inconclusive from ( )' 0ef x = . 

 
0 0

0 0 0e

x x t x

x x t x x

    → → −

    → → =
 

The equilibrium points xe = 0 is an unstable saddle point. 
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For 0r  , there are two distinct equilibrium, xe = 0 and xe = r. 

 

r < 0 

( )2
0 ' 2

e
e e e ex

x r x x f x r x= − = = −  

 ( )0 ' '(0) 0e ex f x f r= = =      

       equilibrium point at the Origin 0ex = is stable (sink). 

 ( )' '( ) 2 0e ex r f x f r r= = = −      

       equilibrium point ex r= is unstable (source). 
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r > 0 

( )2
0 ' 2

e
e e e ex

x r x x f x r x= − = = −  

 ( )0 ' '(0) 0e ex f x f r= = =      

       equilibrium point at the Origin 0ex = is unstable (source). 

 ( )' '( ) 2 0e ex r f x f r r= = = −      

       equilibrium point ex r= is stable (sink). 

 

  



13 
 

 

 

 

 

This type of bifurcation diagram is known as a transcritical 

bifurcation. In this bifurcation, an exchange of stabilities has taken 

place between the two fixed points of the system.  
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Example 3        Pitchfork bifurcation      cs103.py 

A pitchfork bifurcation in a one-dimensional system appears 

when the system has symmetry between left and right directions. In 

such a system, the fixed points tend to appear and disappear in 

symmetrical pair.  

3
( ) ( ) ( )x t r x t x t= −    r is an adjustable constant 

3 2
( , ) '( , ) 3f x r r x x f x r r x= − = −   

 

The system is invariant under the transformation  

 ( )3 3
( ) ( )x x r x x rx x x→− − − − = − − = −  

 

Fixed points of the system: 

 

r < 0     one fixed point 

 0 0 '(0) 0ex x f r=  = =     stable 

 

r = 0     one fixed point 

 0 0 '(0) 0ex x f=  = =    marginally stable 

 
(0) 0 (0) 0 ( )

(0) 0 (0) 0 ( ) 0

x x t x t

x x t x t

  → → −

  → →
 

 

r > 0     three fixed points 

 0 0 '(0) 0ex x f r= = =     unstable 

 0 '( ) 2 0ex x r f r r= =   = −     stable 
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Fig. 3.1 

r = 0          one fixed point: xe = 0 stable 

         r = -16       one fixed point: xe = 0 stable 

         r = + 16     three fixed points: xe =0 unstable 

                                                         xe = - 4 stable,  

                                                         xe = + 4 stable    
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Fig. 3.2     Supercritical pitchfork bifurcation 

r = 0          one fixed point: xe = 0   stable 

         r = -16       one fixed point: xe = 0   stable 

         r = + 16     three fixed points: xe = 0   unstable 

                                                         xe = - 4   stable     

                                                         xe = + 4   stable    
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The pitchfork bifurcations occur when one fixed point becomes three 

at the bifurcation point Pitchfork bifurcations are usually associated 

with the physical phenomena called symmetry breaking. For the 

supercritical pitchfork bifurcation, the stability of the original fixed 

point changes from stable to unstable and a new pair of stable fixed 

points are created above and below the bifurcation point.  

 

From the pitchfork-shape bifurcation diagram, the name ‘pitchfork’ 

becomes clear. But it is basically a pitchfork trifurcation of the 

system. The bifurcation for this vector field is called a supercritical 

pitchfork bifurcation, in which a stable equilibrium 

bifurcates into two stable equilibria. 

 

The transformation x x→− , gives the subcritical pitchfork 

bifurcation  ( )3
x rx x= +  as shown in the following example. 
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Example 4      Subcritical pitchfork bifurcation   cs104.py 

3
( ) ( ) ( )x t r x t x t= +  r is an adjustable constant 

 3 2
( ) '( ) 3f x r x x f x r x= + = +  

 

r < 0     three fixed points 

 0 0 '(0) 0ex x f r= = =     stable 

 0 '( ) 2 0ex x r f r r= =  −  − =   

 

r = 0     one fixed point 

 0 0 '(0) 0ex x f=  = =    marginally stable 

 
(0) 0 (0) 0 ( )

(0) 0 (0) 0 ( )

x x t x t

x x t x t

  → → −

  → → +
 

 

r > 0     one fixed point 

 0 0 '(0) 0ex x f r=  = =     unstable 

  

  



19 
 

 

Fig. 4.1    Subcritical bifurcation      

 

In a subcritical bifurcation, the stability of the original fixed point 

again changes from stable to unstable but a new pair of now unstable 

fixed points are created at the bifurcation point. 
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Fig. 4.2    Fixed points 

 xe = 0 is unstable for 0r         ex →  

     xe is unstable for 0r               ex →  

     xe is stable for 0r                     ex→   
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Example 5       3 5
( ) ( ) ( ) ( )x t r x t x t x t= + −    cs105.py 

3 5
x r x x x= + −   r is an adjustable constant 

3 5 2 4
( ) '( ) 3 5f x r x x x f x r x x= + − = + −  

 

 

( )

( )

( )

2 4

4 2

2 2

1
2

1
2

2 4

0 0

0 0

0

1 1 4

1 1 4

'( ) 3 5

e e e

e e e

e

e

e e e

x x r x x

x x x r

z z r z x

z r

x r

f x r x x

=  + − =

= − + + =

+ − − = =

=  +

=   +

= + −

    

 

The bifurcation diagram shown in Fig. 5.1. has in addition to a 

subcritical pitchfork bifurcation at the Origin, two symmetric saddle 

node bifurcations that occur when r = −1/4. We can imagine what 

happens to the solution x(t) as r increases from negative values, 

assuming there is some noise in the system so that x(t) fluctuates 

around a stable fixed point.  For r < −1/4, the solution x(t) fluctuates 

around the stable fixed point  xe = 0. As r increases into the range  

−1/4 < r < 0, the solution will remain close to the stable fixed point  xe 

= 0.  However, a catastrophic event occurs as soon as r > 0. The fixed 

point xe = 0 is lost and the solution will jump up or down to one of the 

fixed points. A similar catastrophe can happen as r decreases from 

positive values. In this case, the jump occurs as soon as  r < −1/4 
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Since the behaviour of x(t) is different depending on whether we 

increase or decrease r, we say that the system exhibits hysteresis.  

 

The existence of a subcritical pitchfork bifurcation can be very 

dangerous in engineering applications since a small change in the 

physical parameters of a problem can result in a large change in the 

equilibrium state. Physically, this can result in the collapse of a 

structure. 

 

 

Fig. 5.1    Subcritical pitchfork bifurcation at the origin, and two 

symmetric saddle node bifurcations that occur when r = −1/4.  
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Fig. 5.2     Sequence of plots for the fixed points for a range of r 

values. 
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Fig. 5.3     Slight differences in the initial conditions can lead to 

dramatic differences in the steady state value for x. 

 

  



26 
 

Example 6    POPULATION GROWTH                    cs106.py 

A simple mathematical model for the dynamics of a population is  

 1
N

N r N
k

 
= − 

 
                   logistic equation 

where N is the population, N is the rate of change of the population 

(growth rate), r is a positive constant, and k is the carrying population 

(equilibrium population). For the logistic equation, N / N is linearly 

related to the population N.  

The equilibrium points of the system are 

 0e eN N k= =  

To check the stability of the equilibrium, we need to consider the 

function  

( )' / 1 (2 / )
e

eN
f df dN r k N= = −  

0 ' 0eN f r= =      unstable 

' 0eN k f r= = −   stable 

 

For small N, the growth rate equals r, and the population increases 

exponentially. For populations larger than the carrying capacity k, the 

growth rate becomes negative (death rate greater than birth rate). 

 

The population N is always positive (N > 0), since it makes no sense 

to think about a negative population and if N(0) = 0 then there’s 

nobody around to start reproducing, and so the population would be 

zero for all time (N(t) = 0). Ne ~ 0 is an unstable fixed point, so a 
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small population will grow exponentially away from N ~ 0. N = k is a 

stable fixed point, thus, if N is disturbed slightly from k, the 

disturbance will decay monotonically back to k. 

 

Fig.  6.1.   Plot of the logical equation. 

 

Fig. 6.2.   Time evolution of the population for three initial 

conditions. The three populations converge to the population capacity, 

k. 
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The logistic equation has been tested in laboratory experiments in 

which colonies of bacteria, yeast, or other simple organisms were 

grown in conditions of constant climate, food supply, and 

absence of predators. These experiments often yielded growth curves  

with an impressive match to the logistic predictions. However, for 

organisms with more complicated lifecycles, the agreement between 

experiment and predictions was not so good. 

 

Another way to explore [1D] dynamical systems is to plot the slope 

field for the system in the (t, x) plane (figure 6.3). The equation 

( )1x x x= −  with r = 1 and k = 1, can be interpreted in a new way: for 

each point (t, x), the equation gives the slope dx / dt of the solution 

passing through that point. The slope field can be show using a quiver 

plot (figure 6.3) or a streamplot (figure 6.4). Then, finding a solution 

now becomes a problem of drawing a curve that is always tangent to 

the local slope.  

 

Fixed points dominate the dynamics of first-order systems. In all our 

examples, all trajectories either approached a fixed point, or diverged 

to  .  These are the only things that can happen for a vector field on 

the real line [1D]. The reason is that trajectories are forced to increase 

or decrease monotonically, or remain constant. To put it more 

geometrically, the phase point never reverses. Hence the 

impossibility of oscillations. 
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Fig. 6.3. Slope field quiver plot (normalized so that all arrows have 

unit length). 

 

 The slope is given by dY/dX for dY is the function for x  and dX is 

set to 1. 

 

N = 15; t = linspace(0,10,N); x = linspace(0,2,N) 

f = x*(1-x) 

T,X = np.meshgrid(t,x) 

dX = np.ones([N,N]) 

F = X*(1-X) 

dY = F/(np.sqrt(dX**2 + F**2)) 

dX = dX/(np.sqrt(dX**2 + F**2)) 
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Fig. 6.4.  Slope field streamplot. 

 

 

Fig. 6.5.  Slope field and three trajectories with different initial 

conditions. 

 


