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DOING PHYSICS WITH PYTHON 

 

COMPUTATIONAL OPTICS 

GAUSSIAN BEAMS 

(PARAXIAL REGIME) 

 

Ian Cooper 

Please email me any corrections, comments, suggestions or 

additions:   matlabvisualphysics@gmail.com 

 

DOWNLOAD DIRECTORIES FOR PYTHON CODE 

 Google drive 

 GitHub 

emGB01.py 

 

The Code  emGB01.py  is used to model the behaviour of a Gaussian 

beam propagating in the +Z direction with spherical wavefronts in 

the paraxial region. The beam is specified by its wavelength (visible 

part of the electromagnetic spectrum), power and the value of its 

waist.  

 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/python
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INTRODUCTION 

Lasers are widely used in many fields today. Having a mathematical 

description of laser light is essential. The light emitted from a laser is 

composed of a narrow band of wavelengths, such that we can 

assume the light is monochromatic. The light emitted from the laser 

is usually collimated as it propagates in a straight line as a narrow 

beam. As a starting point, we will assume the beam to be 

unpolarized and the light intensity to have a Gaussian profile in any 

plane that is normal to the direction of propagation. This mode is 

referred to as the TEM00 mode and it describes the output of most 

lasers. 

  

 

Fig. 1.   Red light emitted from a HeNe laser. The light is 

seen due to scattering. The light propagates as a 

collimated beam in a straight line with slight divergence in 

its cross-section. 
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MATHEMATICS OF A GAUSSIAN BEAM  

The light emitted from a laser can be modelled by solving the [3D] 

scalar wave equation for the electric field ( ), , ,E x y z t   

        (1)        ( )
( )2

2

2 2

, , ,1
, , , 0

E x y z t
E x y z t

c t


 − =


 

 

We will assume that a monochromatic beam with a circular cross-

section propagates in free spaces and that the electric field can be 

expressed as a product of its spatial part and time dependent part 

       (2)       

( ) ( ), , , , , / 2 2 /
i t

SE x y z t E x y z e c f k f k
      −

= = = = =  

Substitution of equation 2 into equation 1 gives the Helmholtz 

equation 

       (3)        ( ) ( )2 2
, , , , 0S SE x y z k E x y z + =  

 

We will only consider the solution for a wave propagating in the Z 

direction where 

       (4)        ( ) ( ), , , ,
i k z

S XYE x y z E x y z e=  
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The term i k z
e  accounts for the wave oscillation along the 

propagation direction. 

 

Substitution of equation 4 into equation 3 gives 

        (5)        
2 2 2

2 2 2
2 0XY XY XY XYE E E E
ik

xx y z

   
+ + + =

  
 

 

We will assume that there is a slow decrease in the amplitude of the 

wave as the wave propagates in the Z direction and only consider the 

wave far from the origin but close to the Z axis such that x z  and 

y z . Thus, we can say that ( ), ,XYE x y z  varies slowly with z, and 

thus we can neglect the term 
2

2

XYE

z




.  Therefore, the wave equation 

can be expressed as 

        (6)       
2 2

2 2
2 0XY XY XYE E E

i k
xx y

  
+ + =

 
 

Without going into all the mathematical details, a solution to paraxial 

wave equation is 



5 
 

        (7)        
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w x y
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R
 

 + 
= −  

   

  +
− −   

  

 

Equation 7 us known as the paraxial wave equation. 

 

 

Fig. 1 Geometry for propagation of Gaussian bean. 
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0E  is the amplitude of the wave 

( )w z   beam spot and 0w  is the beam waist 

( )w z  is the radius of the beam at position z at which the amplitude 

has decreased by the factor 1/e from its axial value or where the 

irradiance is 1/e2 of its axial value. At position z along the axis, the 

beam spot ( )w z  is given by 

        (8)       

2 2

0 0 02
0

( ) 1 1 (0)
R

z z
w z w w w w

zw





   
= + = + =    

  

 

  

where Rz  is the Rayleigh range 

        (9)        2
0 /Rz w =  

The Raleigh range is an indicator of the divergence of the beam. 

        (10)      

2
2

2 0( ) / 1R

w
R z z z z z

z





  
 = + = +      

 

( )R z  is the radius of curvature of the wavefront (surface that 

contains all points of the wave that have the same phase) at position 

z.  As the beam propagates in the +Z direction, the width of the beam 

expands, and this is measured by the beam spot as it increases with 

z. For the expanding beam, its wavefront must have a spherical 
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shape because a wave always propagates in a direction 

perpendicular to its wavefront. 

( )z      Gouy phase. 

         (11)        1
( ) tan

R

z
z

z
 −  

=  
 

 

The Gouy phase slightly shifts the phase of the wavefront of the 

wave as a whole. 

 

        divergence angle of the beam 

         (12)     
0

Rz z
w





=   

When Rz z  the ray description of the propagation of the light 

breaks down as the beam spot slowly increases. When Rz z , the 

beam spot expands linearly as  

        (13)         

( ) 2
0 0 0( ) / /

R

R R R

z
z z w z z w z z w z w


 


 = = = =

where   is the limiting value of the divergence.  Figure 2 shows the 

divergence of the beam for ( )w z z= .  

 

Diffraction causes to spread as it propagates, and therefore it is 

impossible to have a perfectly collimated beam.  
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The paraxial approximation is only valid when 0w   and is not 

accurate for strongly diverging beams. 

ENERGY: Irradiance (Intensity)   S(r, z)  and power P(z) 

The irradiance (intensity) S  is the time average flow of energy per 

unit time per unit area [W.m-2]. The irradiance S can be calculated 

from the electric field  

        (14)        
20

2

c
S E

 
=  
 

 

The symbol S is used for the irradiance in the Code and notes and 

not the more commonly used letter I. c is the speed of light and 0  is 

the permittivity of free space.  

 

For our propagating Gaussian beam, the electric field E is given by 

equation 7, so the irradiance S is 

        (15A)        
2 2 2

2 0 0
0 2

( , , ) exp 2
2

c w x y
S x y z E

w w

   +   
= −     

       

 

 or 

        (15B)         

2 2
2 2 20 0

0 2
( , ) exp 2

2

c w r
S r z E r x y

w w

      
= − = +     

       

 

 

The maximum irradiance occurs at the location ( )0, 0r z= =  where 
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        (15C)        20
max 0

2

c
S E

 
=  
 

  

The variation of the intensity along the Z axis ( )0r =  is given by 

        (15D)        

2

2 20 0 0
0 0 2 2

1
( ) (0, )

2 2 1 /
z

R

c w c
S z S z E E

w z z

        
= = =       

+       

    

 

The power P transmitted through a circular disk of radius rP in an XY 

plane at position zP is  

       (16)       ( )
0

( ) ( , ) 2
Pr

P z S z r r dr=   

                        

2 2
2 2 20 0

0 2
( , ) exp 2

2

c w r
S r z E r x y

w w

      
= − = +     

       
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


     
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       
  
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2
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w w
 

 − 
=   

   
  
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2 2
2 0 0

0 2

2
( ) 1 exp

4

Pc w r
P z E

w

      −
= −       

    

 

        (17)        
2

0 2

2
( ) 1 exp PrP z P

w

  −
= −   

  

 

 

When Pr →  then 0( )P z P→   

        (18)        
2

2 0 0
0 0

4

c w
P E

  
=   

 

     

where P0 is the total power transmitted by the beam. If we know the 

total power 0P  transmitted by the beam, then we can calculate the 

electric field amplitude 0E  and the maximum irradiance of the beam 

0S  

        (19)        0
0 2

0 0

4 P
E

c w 
=  

 

        (20)         
0

2

0

2

0

P

w
S


=  
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SIMULATIONS 

The Python Code emGB01.py can be used for visualization of a 

Gaussian beam (TEM00 mode) propagating in the +Z direction. 

 

The width of the laser beam is specified by the size of the beam spot 

as given by equation (8) and the beam spot as a function of z is 

shown figure 2. 

        (8)         

     

2 2

0 0 02
0

( ) 1 1 (0)
R

z z
w z w w w w

zw





   
= + = + =    

  

 

 

 

Fig. 2.   Beam spot w as a function of position z. The Rayleigh range zR 

is the z value when  02w w=  as shown by the horizontal black 

where w = 0.707 mm and the vertical lines zR = 1.636 m and zR = 

1.241 m. 
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The longer the wavelength of the light, then the more rapidly the 

beam diverges 

                                      
0

Rz z
w





=   

 

When z = 0, we have 0( 0)w z w= = where w0 is the beam waist. This 

the smallest value that ( )w z  can have. Thus, z = 0 is a special point in 

the propagation of the beam. For z > 0 the beam spot increases. 

Also, in the negative Z direction the beam spot would also increase. 

When the beam is focused by a lens there is always a minimum 

width of the beam at the focal point such that the beam spot is equal 

to the value of the waist 0( )w z w= . It is important to note that the 

Raleigh range is an indicator of the divergence of the beam. When 

Rz z=  ( )/ 1Rz z =  we have 0( ) 2Rw z z w= = . This is a turning point 

in the propagation of the light as the beam spot makes the transition 

from being nearly constant to increasing linearly as shown in figure 

2.  The Rayleigh range is inversely proportional to the wavelength 

( )1/Rz  , hence the longer the wavelength the smaller the value 

its value as shown in figure 2. 

 

Note: the smaller the value of Rz  the quicker the beam will expand in 

a linear manner and the smaller the value of the waist, the larger the 

divergence angle of the beam. Because the divergence is inversely 

proportional to the spot size, for a given wavelength  , a Gaussian 
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beam that is focused to a small spot diverges rapidly as it propagates 

away from the focus. Conversely, to minimize the divergence of a 

laser beam in the far field (and increase its peak intensity at large 

distances) it must have a large cross-section at the waist 0w and thus 

a large diameter where it is launched, since 0( )w z w . This 

relationship between beam width and divergence is a fundamental 

characteristic of diffraction, and of the Fourier transform which 

describes Fraunhofer diffraction. Since the Gaussian beam model 

uses the paraxial approximation, it fails when wavefronts are tilted 

by more than about 30° from the axis of the beam. From the above 

expression for divergence, this means the Gaussian beam model is 

only accurate for beams with waists where 2
0 6 /w   . 

 

The shape of a Gaussian beam of a given wavelength   is governed 

solely by one parameter, the beam waist 0w . This is a measure of the 

beam size at the point of its focus ( 0z = ) and corresponds to the 

smallest value of the beam spot parameter. From value of the waist 

0w , other parameters describing the beam geometry are 

determined, such as, the Rayleigh range Rz  and asymptotic beam 

divergence  . 
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Radius of curvature of the wavefront     ( )R z   

        (10)        2
( ) /RR z z z z= +   

The phase term in equation (7)  

                    
2 2 2

2 2 2
exp exp

2 2

x y r
i k i k r x y

R R

      +
= = +         

      

         

gives the curvature of the wavefront which is spherical with radius 

.  Figure 3 shows the variation in the radius of curvature ( )R z  as 

a function of z. 

 

Fig.3.   Radius of curvature of the wavefront as a function of z. 

8633 n nm 4 0 m ==  

 

When z = 0 we have ( 0)R z = =  , the wavefront is a plane wave and 

at this point all parts of the wave are moving in the same direction. 

When Rz z , then ( )R z z . The wavefront is a nearly a spherical 

( )R z
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surface traveling away from z = 0. This is the geometric optics limit. 

When we focus a beam of light, we expect the light rays to go in 

straight lines to and from the focal point (z = 0). This is correct if 

Rz z . For Rz z , the wave aspect of the light applies. When 

Rz z=  then ( ) 2 RR z zR z= =  which is the minimum value of the 

radius of curvature and corresponds to the turning point between 

ray-optics and wave-optics. 

 

Axial irradiance 

The variation of the intensity along the Z axis ( )0r =  is given by 

        (15D)        

2

2 20 0 0
0 0 2 2

1
( ) (0, )

2 2 1 /
z

R

c w c
S z S z E E

w z z

        
= = =       

+       

    

 

Figure 4 shows a plot of the axial irradiance Sz as a function of z. 
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Fig. 4.     Axial irradiance zS  as a function of position z along the axis 

of the beam. The maximum value of the irradiance from equation 

15D is  -2
max 2546 W.mS = .  Note, at Rz z=  the on-axis irradiance is 

one-half the maximum irradiance at the waist ( )0z =

max( ) / 2RS z S= .   

 

When ( )2 2 2 2
1 / /R R Rz z z z z z+  , then 

2

1
( )zS z

z
  and 

1
( 0, )E r z

z
=  . Therefore, the amplitude of the wave decreases with 

increasing z in the same manner as a spherical wave.    
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Radial irradiance 

The radial irradiance Sr is the variation in the irradiance in the XY 

plane located at position z. and typical plots are shown in figure 5. 

        (15E)        

2 2
2 0 0

0 2
( ) ( , ) exp 2 fixed

2
r

c w r
S r S r z E z

w w

      
= = −     

       

 

For Rz z  the on-axis ( )0r = irradiance falls off to a good 

approximation according to the inverse square law ( )1/rS r  
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r

r
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


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=
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-2 -2
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66 W0 .4 m
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
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Fig. 5.    The variation in the radial irradiance Sr at three z positions 
along the Z axis. The profile of each plot is a Gaussian function. 
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Figure 6 shows the radial irradiance Sr for the wavelengths 633 nm 

and 480 nm. 

 

 

 

Fig. 6.  Beam profile: Radial irradiance Sr at zP = 5.00 m 
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Fig. 7.   Beam profile: Radial irradiance Sr as a function z. The solid 

lines show the beam spot: how the beam diverges and how its 

intensity decreases with increasing z distance from the waist at z = 0. 
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Power P transmitted through a circular disk of radius rP in an XY 

plane at position zP   

        (16A)        
2

0 2

2
( ) 1 exp PrP z P

w

  −
= −   

  

 

Figure 9 shows the percentage power that would pass through a 

circular aperture of varying radius placed perpendicular to the beam 

at the beam waist.  

 

Fig. 9.   The percentage power that would pass through a circular 

aperture of varying radius placed perpendicular to the beam at the 

beam waist. 86% of the light passes through the aperture when the 

radius of the aperture is equal to the beam waist. 
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Gouy phase      ( )z   

         (11)        1
( ) tan

R

z
z

z
 −  

=  
 

 

The Gouy phase slightly shifts the phase of the wavefront of the 

wave as a whole. For a focused beam, the dependence of the Gouy 

phase as a function of z is displayed in figure 4. As z →  the Gouy 

phase asymptotes to ( ) / 2z =  . Thus, only a  phase shift occurs 

from z = −  to z = + . This results in inversion of a signal that has 

passed through the waist ( )0( 0)w z w= = , that corresponds to the 

inversion obtained with the ray-tracing approximation (Geometrical 

Optics). 

 

Fig.10A.   Gouy phase plot for a focused Gaussian beam. 
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Fig.10B.   Gouy phase plot for a focused Gaussian beam. 

 

The most rapid change in phase occurs in the region from Rz z= − to 

Rz z= +  and when Rz z= − , then ( ) / 4Rz z = − = −  and Rz z= + , 

then ( ) / 4Rz z = + = + .  The Gouy phase shift along the beam 

remains within the range / 2  (for a fundamental Gaussian beam) 

and is not observable in most experiments. However, it is of 

theoretical importance and takes on a greater range for higher-order 

Gaussian modes.  

 

 

 

 

 


