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DOING PHYSICS WITH PYTHON 

 

COMPUTATIONAL OPTICS 

MICHELSON INTERFEROMETER 

 

Ian Cooper 

Please email me any corrections, comments, suggestions or 

additions:   matlabvisualphysics@gmail.com 

 

DOWNLOAD DIRECTORIES FOR PYTHON CODE 

 Google drive 

 GitHub 

emMichelsonA.py 

Plane waves: uniform screen intensity plots; animation of screen intensity 

Plant growth calculation 

emMichelsonA1.py 

Plane waves: uniform screen intensity plot 

emMichelsonB.py 

Point source: screen intensity plots; animation of screen intensity 

emMichelsonC.py 

Point sources: screen intensity plot [2D] circular fringe pattern 

emMichelsonD.py 

Plane waves: uniform screen intensity plots with M2 mirror tilted 

 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/python
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INTRODUCTION 

Interferometers are basic optical tools used to precisely measure 

wavelength, distance, index of refraction, and temporal coherence of 

optical beams. 

 

In the Michelson interferometer, light from a source is split into two 

beams at a beam splitter (partially reflecting mirror). One beam 

travels to a fixed mirror M1 and is reflected back to the beam splitter 

while the other beam is reflected from a movable mirror M2 back to 

the beam splitter. The two beams recombine and are then detected as 

shown in figure 1.  The two beams must be mutually coherent for 

interference fringes to be observed.  This process is known as 

interference by division of amplitude. It is assumed that the beam 

splitter divides the two beams equally and is oriented at 45o to the 

source beam.  
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Fig. 1.   Michelson interferometer. 

 

Note, there is a  change in phase at the beam splitter for the beam 

reflected from mirror M2. So, there is a   difference in the phase of 

the two light beams when they combine at the detector. 

 

A linear optical equivalent of the Michelson interferometer helps to 

understand the optical path differences and aids in calculating the 

detector screen intensity. The mirror M1 and the source S are replaced 

with virtual images M1I and SI (figure 2). The detected interference 

pattern is the same in both configurations where the separation 

distance between the two mirrors is given by  2 1d d d = − . 

 



4 
 

 

Fig. 2.   Linear optical equivalent arrangement of the Michelson 

interferometer. 

 

 

For the rays that travels along the central path of the interferometer, 

the optical path difference between the light reflected from the two 

mirrors M1I and M2 is 2 d . Hence, at the centre of the detector 

       Dark spot (destructive interference)   

                  2 d n =  

      Bright spot (constructive interference)         

                  ( )1
2

2 d n n = +    

where  0, 1, 2, 3, ...n =  and remember that the two beams are   out of 

phase at the detector. 
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Monochromatic parallel plane wave interference 

The intensity of the detector screen is due to the interference of the 

two plane waves. The wavefronts from the reflection from mirror M1I 

are parallel to the screen, while the wavefronts from the reflection 

from mirror M2 are tilted at an angle to the screen.  The angle / 2    

is the tilt of mirror M2 w.r.t. the X axis and   is the angle of the plane 

wave from mirror M2 w.r.t. to the Z axis as shown in figure 3. 

 

 

Fig. 3.   Mirror geometry for a tilted movable mirror M2. The mirror 

M2 is tilted through the angle / 2  w.r.t. the Z axis, while the beam is 

deflected through an angle  . 

 Point on mirror M1I    ( )1 1 1, , 0x y z =  

 Point on mirror M2    ( )2 2 2, ,x y z d=  

 Point on detector       ( ), ,D D Dx y z  
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The equation of a plane monochromatic wave can be expressed as 

 ( )0 expE E i k r = +  

For the configuration shown in figures 2 and 3, for plane 

monochromatic beams of wavelength   the time independent electric 

fields of the two beams the point at the point ( ),D Dx z  on the screen 

of the detector are 

        (1A)     
( )( )2

1 0 e Di k z d i

DE E
+  +

=  

        (1B)     
( )( )cos sin

2 0 e D Di k z x

DE E
 +

=  

 

Then, the resultant electric field DE  at the detector is the superposition 

of the fields 1DE  and 2DE .                    

        (1C)      1 2D D DE E E= +  

 

Therefore, the intensity SD of the combined beam at the detector 

screen is 

          (1D)     
*

D D DS E E=  

 

More generally, for tilts is both the X and Y direction, produces a 

relative phase variation of 

 ( ) ( )sin sinx x x yk x k y  = +  

where / 2x  represents the tilt of the mirror in the X dimension 

and / 2y  represents the amount of tilt in the Y dimension. 
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Two mirrors are precisely parallel with no tilt ( )0 =  

If the two mirrors are precisely parallel with no tilt ( )0 =  as 

shown in figures 2, 3 and 4, then the detector screen is uniformly 

illuminated over its whole area. The intensity on the detector screen 

by can be calculated from the superposition of the electric fields 

propagated from the two mirrors. The geometry is shown in figure 4. 

 
Fig. 4.   Geometry of a Michelson interferometer for calculating the 

detector screen intensity from the electric fields propagated from each 

mirror. 

 

The screen will be dark when the difference in the optical path 

lengths of the two beams is an integral multiple of a wavelength and 

bright when the there is an odd multiple of a half-wavelength (figure 

4  emMichelsonA.py). 

      Dark (destructive interference)         2 d n =               

      Bright (constructive interference)     ( )2 1/ 2d n  = +    

 

Regions of uniform phase, called fringes (in this case individual 

stripes), have the same intensity. As the delay z2 is varied, the fringes 

seem to ‘move’ across the detector and the entire beam ‘blinks’ on 

and off as the delay path z2 is varied.        
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Fig. 4.   The detector screen SD intensity as a function of the optical 

path length difference for the reflections from the two mirrors. 

VIEW ANIMATION 

https://d-arora.github.io/Doing-Physics-With-Matlab/images/agA.gif
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The animation shows the variation in the detector screen intensity as 

the position of mirror M2 changes.  The number fn  of fringes 

increases by one each time the distance of the mirror M2 is moved 

through a distance is given by 2 /d  .   

 

Example     Plant Growth 

The Michelson interferometer can be used to measure small 

displacement accurately. For example, it is possible to measure the 

growth rate of a plant. The plant was attached to the movable mirror 

M2 and its position was adjusted to give a black field of view on the 

detector screen. A helium-neon laser was used with a wavelength of 

632.8 nm. As the plant grew, the distance between the mirrors 

increased. So, the fringe pattern changed in a manner as observed in 

the animation. In an 8.0 hour period, ( )3415 5  dark fringes crossed 

the field of view. Estimate the growth rate of the plant in mm.h-1 and 

its uncertainty.   

emMichelsona.py 

#%% Plant Growth Calculation 

wL = 632.8e-9;        # wavelength [m] 

dt = 8.3              # Time interval  [h] 

nf = 3420;            # Number of fringes 

dP = (nf * wL /2) * 1e3;   # distance moved by plant on mirror 2 [mm] 

dPdt = dP/dt;         # rate of growth  [mm/h]   

print('Inputs  ') 

print('   wavelength = %3.1e  m ' % wL) 

print('   time interval = %3.1f  h' % dt) 

print('   fringes  = %3.0f ' %nf) 

print('Outputs  ') 
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print('   growth distance = %3.5f  mm' % dP) 

print('   rate of growth  = %3.5f  mm/h ' % dPdt) 

Inputs   

   wavelength = 6.3e-07  m   

   time interval = 8.0  h   

   fringes  = 3410     

Outputs   

   growth distance = 1.07892  mm   

   rate of growth  = 0.13487  mm/h   

Inputs   

   fringes  = 3415     

Outputs   

   growth distance = 1.08051  mm   

   rate of growth  = 0.13506  mm/h   

Inputs   

   fringes  = 3420     

Outputs   

   growth distance = 1.08209  mm   

   rate of growth  = 0.13526  mm/h   

Growth rate  =   ( )0.1351 0.0002  mm.h-1 

emMichelsona.py 

#%% Plant Growth Calculation 

wL = 632.8e-9;        # wavelength [m] 

dt = 8.3              # Time interval  [h] 

nf = 3420;            # Number of fringes 

dP = (nf * wL /2) * 1e3;   # distance moved by plant on mirror 2 [mm] 

dPdt = dP/dt;         # rate of growth  [mm/h] 

   

print('Inputs  ') 

print('   wavelength = %3.1e  m ' % wL) 

print('   time interval = %3.1f  h' % dt) 

print('   fringes  = %3.0f ' %nf) 

print('Outputs  ') 

print('   growth distance = %3.5f  mm' % dP) 

print('   rate of growth  = %3.5f  mm/h ' % dPdt)You 
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Since we have plane wave illumination the intensity distribution is 

uniform on the screen as shown in figure 4.  Figure 5 shows the 

detector screen intensity variation as the position of the mirror M2 is 

changed (z2) for three different wavelengths. 

 

From equations 1 after lots pf algebra, it can be shown that if the two 

mirrors are precisely parallel ( )0 = , then the intensity on the screen 

is 

          ( )2
0 sinDS S k d=   

 

and the whole area of the screen will be uniformly illuminated (figure 

5).  
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Fig. 5.  Screen intensity as a function of the position of mirror M2. 

The separation between fringes (dark screen or bright screen) is equal 

to a half wavelength change in the position of mirror M2. The shorter 

the wavelength then the small distance mirror M2 moves between 

fringes. Thus, the Michelson interferometer can be used to make 

accurate wavelength measurements.   emMichelsonA1.py 
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When two waves combine constructively on the detector screen, a 

bright image (fringe) is observed. When mirror M2 moves through a 

distance / 2  another bright image is formed since the optical path 

length of beam 2 increases by one wavelength  . Consequently, by 

counting the number of fringes m passing a given point as M2 is 

moved a distance d , an observer can measure minute displacements 

that are accurate to a fraction of a wavelength, as shown by the 

relationship 

 
2

d m
 

 =  
 

 

Example 

A sodium lamp is used with a Michelson interferometer. Sodium has 

two yellow spectral lines with very similar wavelengths of 589.0 and 

589.6 nm. The spectral line 589.0 nm was observed and mirror M2 

was moved through a distance 7068 nm. How many fringes would be 

observed?  

          
( )( )2 70682

24
2 589

d
d m m





 
 = = = = 

 
 

 

For the same number of fringes, what distance would mirror M2 move 

for the 589.6 nm sodium line? 

            
( )( )24 589.6

nm 7075.2 nm
2 2

d m
 

 = = = 
 

   

For the longer wavelength of, 589.6 nm, mirror M2 would have to 

move a distance 7.2 nm greater than for the 589.0 nm spectral line. 
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Mirror M2 rotated about the Y axis (waves reflected by M2 

at an angle   to the Z axis) 

The intensity of the detector screen is due to the interference of the 

two plane waves. The wavefronts from the reflection from mirror M1I 

are parallel to the screen, while the wavefronts from the reflection 

from mirror M2 are tilted at an angle to the screen (figure 3).  The 

resultant interference pattern shows a series of vertical bright and dark 

equally spaced fringes. The angle / 2  is the tilt of mirror M2 w.r.t. 

the X axis and   is the angle of the plane wave from mirror M2 w.r.t. 

to the Z axis as shown in figure 3. That is, by the law of reflection, the 

beam returning from the misaligned mirror deviates from the 

‘ideal’ path by an angle θ. 

 

Assume that there are bright fringes at screen position Dx  and the 

adjacent fringe at ( )D Dx dx+ . Then the phase difference between two 

fringes must be 2 . So, from equation 1B 

 ( ) ( )( )cos sin 2 cos sinD D D D Dk z x k z x dx    + − = + +  

Hence, the fringe spacing is 

 
sin

Ddx



=  

When the tilt angle goes to zero and the two mirrors become aligned, 

then 

           0 sin 0 Dx → →  →  

Thus, the fringes disappear and the screen becomes uniformly 

illuminated as described above. 
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Fig. 6. When the tilt angle decreases, the fringe separation becomes 

smaller.         0 sin 0 Dx → →  →                emMichelsonD.py 
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The fringe separation becomes smaller as the wavelength decreases 

and when mirror M2 is moved, the fringes move in a horizontal 

direction across the detector screen (figure 7. 

 

 

Fig. 7.  When M2 is tilted, the fringe separation becomes smaller as 

the wavelength decreases and the fringes are of equal thickness. 

emMichelsonD.py 
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Illumination by a monochromatic point source 

You can calculate the fringe pattern for point source illumination  

The input parameters are the wavelength, the distance between the 

virtual sources and the maximum viewing angle. The spherical waves 

from the two-point sources produce circular fringes on a detector 

screen. 

 

A dark spot is located at the centre of the fringe pattern if the distance 

between the virtual source points is 

             0, 1, 2, ...d m m = =  

 

A bright spot is located at the centre of the fringe pattern if the 

distance between the virtual source points is  

             ( )1/ 2 0, 1, 2, ...d m m = + =  

m is called the order of the fringe. 

 

Link to animation below which shows how the circular fringe pattern 

changes as the position of mirror M2 changes with separation distance 

z2. 

VIEW ANIMATION 

https://d-arora.github.io/Doing-Physics-With-Matlab/images/agMIB.gif
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Fig. 8. Fringe pattern in a radial direction for the detector screen 

intensity. The smaller the wavelength, the greater the density of the 

bright and dark fringes.            emMichelsonB.py 
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Fig. 9. Circular fringe pattern from two point sources separated along 

the Z axis.   emMichelsonC.py 
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If the beam from the point source of mirror M2 is shifted off the XZ 

plane then the circular fringe pattern is distorted as shown in figure 

10. 

 

Fig. 10.  Distorted fringe pattern for the point source of mirror M2 is 

shifted off the XZ plane  ( )2700 nm 5y = = . 
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Refractive Index of a Gas 

A helium-neon laser ( )632.8 nm =  is used to measure the refractive 

index of a gas. In one arm of the Michelson interferometer, a glass 

chamber is placed with attachments for either evacuating or 

evacuating a gas. Consider a chamber of length 20 mm in length, 

initially empty. As a gas is slowly let into the chamber, you observe 

that dark fringes move past a reference line in the field of 

observation.  

 

VIEW ANIMATION 

 

When the chamber is filled to the desired pressure, ( )120 5  fringes 

moved past the reference line. Estimate the refractive index n of the 

gas and its uncertainly. 

Solution 

( )9 3
632.8 10 m 120 5 2.0 10 m   = ?m L n − −

=  =  =   

The ray travels a distance L through glass chamber and another 

distance L upon reflection. Therefore, the total travel distance is 2L. 

When empty, the number of wavelengths that fit in this chamber is 

               
9

1 1

1

2
632.8 10 m

L
N 



−
= =   

https://d-arora.github.io/Doing-Physics-With-Matlab/images/agA.gif
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When the chamber is fully filled with the gas, the number of 

wavelengths that fit in this chamber is 

               
1

2 2

2

2L
N

n





= =  

The number of fringes m observed when the chamber goes from 

empty to fill is simply the difference in the number of wavelengths 

fitting the chamber when empty compared to full 

 

( )2 1

1 1 1

1

2 2 2
1

1
2

L L L
m N N n n

n m
L

  



= − = − = −

= +

 

 

The calculation can be done in the Console Window 

wL = 632.8e-9 

L = 20e-3 

m = array([115,120,125]) 

n = 1+(2*L/wL)*m 

➔   array([1.0018193, 1.0018984, 1.0019775]) 

( )1.0019 0.0001n =   

 

 

 


