
1

DOING PHYSICS WITH PYTHON

COMPUTATIONAL OPTICS

RAYLEIGH-SOMMERFELD 1

DIFFRACTION INTEGRAL

BEAM PROPAGATION FROM AN

APERTURE: MATHEMATICAL CONCEPTS

Ian Cooper

Please email me any corrections, comments, suggestions or

additions: matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORIES FOR PYTHON CODE

 Google drive

 GitHub

emRS01.py

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/python

2

RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL

OF THE FIRST KIND

The Rayleigh-Sommerfeld region includes the entire space to the

right of the aperture. It is assumed that the Rayleigh-Sommerfeld

diffraction integral of the first kind is valid throughout this space,

right down to the aperture. There are no limitations on the

maximum size of either the aperture or observation region, relative

to the observation distance, because no approximations have been

made.

The Rayleigh-Sommerfeld diffraction integral of the first kind (RS1)

can be expressed as

 (1)
A

3

1
(1) d

2

PQj k r

P Q p PQ

PQS

e
E E z j k r S

r
= −

where (), ,P P PE x y z
P

 is the electric field at the observation point

(), ,P P PP x y z , (), ,0Q QE x y
Q

 is the electric field within the aperture

and rPQ is the distance from an aperture point Q to the observation

point P. The double integral is over the area of the aperture SA. The

wavelength of the light and the propagation constant are

 2 2
k

k

 


 ==

https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/op_rs1.pdf

3

The irradiance I is proportional to the square of the magnitude of the

electric field, hence the irradiance in the space beyond the aperture

can be calculated by

 (2)
*

0
I I E E= I0 is a normalizing constant

Fig. 1. Geometry of the aperture and observation spaces.

The electric field (), ,P P PE x y z
P

 at the point P(), ,P P Px y z can be

computed by evaluating the double integral (equation 1) over the

aperture space Q numerically using a two-dimensional form of

Simpson’s 1/3 rule as given by equation 3 when arbitrary units are

used for the electric field and irradiance

https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/op001.pdf
https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/op001.pdf

4

 (3)

() ()(), , 1
3

1 1

Q Q

P P P

j k r
n n PQmn

e
E x y z z j k r E S

P P PQmn Qmn mn
rm n PQmn

  
  

= −    
= =   

  

where Smn are the Simpson’s two-dimensional coefficients. Each term

in equation (2) can be expressed by a square matrix and the matrices

can be manipulated very easily in Python to give the estimate of the

integral as indicated in figure 2.

Fig. 2. Matrices used in computed the diffraction integral.

5

EXAMPLE emRS01.py

Diffraction from a rectangular aperture

6

7

emRS01.py

INPUT PARAMETERS

num = 30 # number for observation space

nP = num*4+1 # observation points for P: format integer * 4 + 1

nQ = 159

 # aperture points for Q must be ODD

wL = 632.8e-9 # wavelength [m]

Aperautre space: full-width [m]

aQx = 2e-4; aQy = 4e-4

#Observation spacehalf: half-width % zP [m]

xPmax = 10*1500*wL; yPmax = 10*1500*wL; zP = 1 #55000*wL

SETUP

k = 2*pi/wL # propagation constant

ik = k*1j # jk

Initialise matrices

unit = np.ones([nQ,nQ]) # unit matrix

rPQ = np.zeros([nQ,nQ]); rPQ3 = np.zeros([nQ,nQ])

MP1 = np.zeros([nQ,nQ]); MP2 = np.zeros([nQ,nQ]); kk =
np.zeros([nQ,nQ])

MP = np.zeros([nQ,nQ])

EQ = np.ones([nQ,nQ])

8

Aperture space

xQmin = -aQx/2; xQmax = aQx/2

yQmin = -aQy/2; yQmax = aQy/2

xQ1 = linspace(xQmin,xQmax,nQ)

yQ1 = linspace(yQmin,yQmax,nQ)

xQ, yQ = np.meshgrid(xQ1,yQ1)

RQ = (xQ**2 + yQ**2)**0.5

#EQ[RQ > xQmax] = 0

Observation space

xPmin = -xPmax; yPmin = -yPmax

EP = np.zeros([nP,nP])+np.zeros([nP,nP])*1j

xP1 = linspace(xPmin,xPmax,nP)

yP1 = linspace(yPmin,yPmax,nP)

xP, yP = np.meshgrid(xP1,yP1)

Simpson [2D] coefficients

S = np.ones(nQ)

R = np.arange(1,nQ,2); S[R] = 4;

R = np.arange(2,nQ-1,2); S[R] = 2

scx, scy = np.meshgrid(S,S)

S = scx*scy

9

% COMPUTATION OF DIFFRACTION INTEGRAL FOR ELECTRIC
FIELD % IRRADIANCE-

for c1 in range(nP):

 for c2 in range(nP):

 rPQ = np.sqrt((xP[c1,c2] - xQ)**2 + (yP[c1,c2] - yQ)**2 + zP**2)

 rPQ3 = rPQ*rPQ*rPQ

 kk = ik * rPQ

 MP1 = exp(kk)

 MP1 = MP1 / rPQ3

 MP2 = zP * (ik * rPQ - unit)

 MP = MP1 * MP2

 EP[c1,c2] = sum(sum(EQ*MP*S))

Irr = np.real(EP*np.conj(EP))

Irr = Irr/amax(amax(Irr))

indexXY = num*2+1

IY = Irr[:,indexXY]

IX = Irr[indexXY,:]

Position of first zero in irradiance

x0 = wL*zP/(1*aQx)*1e3 # [mm]

y0 = wL*zP/(1*aQy)*1e3 # [m]

