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RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL 

OF THE FIRST KIND 

The Rayleigh-Sommerfeld region includes the entire space to the 

right of the aperture. It is assumed that the Rayleigh-Sommerfeld 

diffraction integral of the first kind is valid throughout this space, 

right down to the aperture. There are no limitations on the 

maximum size of either the aperture or observation region, relative 

to the observation distance, because no approximations have been 

made. 

 

The Rayleigh-Sommerfeld diffraction integral of the first kind (RS1) 

can be expressed as 
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https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/op_rs1.pdf
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The irradiance I is proportional to the square of the magnitude of the 

electric field, hence the irradiance in the space beyond the aperture 

can be calculated by 

 (2) 
*

0
I I E E=         I0 is a normalizing constant 

 

Fig. 1.  Geometry of the aperture and observation spaces. 

 

The electric field ( ), ,P P PE x y z
P

 at the point P( ), ,P P Px y z  can be 

computed by evaluating the double integral (equation 1) over the 

aperture space Q  numerically using a two-dimensional form of 

Simpson’s 1/3 rule as given by equation 3 when arbitrary units are 

used for the electric field and irradiance 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/op001.pdf
https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/op001.pdf
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where Smn are the Simpson’s two-dimensional coefficients. Each term 

in equation (2) can be expressed by a square matrix and the matrices 

can be manipulated very easily in Python to give the estimate of the 

integral as indicated in figure 2. 

 

 

Fig. 2.  Matrices used in computed the diffraction integral. 
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EXAMPLE    emRS01.py 

 

Diffraction from a rectangular aperture 

 

 

 



6 
 

 

 

 

  



7 
 

emRS01.py 

# INPUT PARAMETERS  

num = 30             # number for observation space 

nP = num*4+1         # observation points for P:  format integer * 4 + 1 

nQ = 159           

 

 # aperture points for Q  must be ODD 

wL = 632.8e-9        # wavelength [m] 

# Aperautre space: full-width [m] 

aQx = 2e-4; aQy = 4e-4            

 

#Observation spacehalf: half-width % zP   [m]  

xPmax = 10*1500*wL; yPmax = 10*1500*wL; zP = 1 #55000*wL       

 

# SETUP  

k = 2*pi/wL            # propagation constant 

ik = k*1j              # jk 

 

# Initialise matrices 

unit = np.ones([nQ,nQ])    # unit matrix 

rPQ = np.zeros([nQ,nQ]); rPQ3 = np.zeros([nQ,nQ]) 

MP1 = np.zeros([nQ,nQ]); MP2 = np.zeros([nQ,nQ]); kk = 
np.zeros([nQ,nQ])  

MP = np.zeros([nQ,nQ]) 

EQ = np.ones([nQ,nQ]) 
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# Aperture space 

xQmin = -aQx/2;  xQmax = aQx/2 

yQmin = -aQy/2;  yQmax = aQy/2 

xQ1 = linspace(xQmin,xQmax,nQ)     

yQ1 = linspace(yQmin,yQmax,nQ) 

xQ, yQ = np.meshgrid(xQ1,yQ1) 

 

RQ = (xQ**2 + yQ**2)**0.5 

#EQ[RQ > xQmax] = 0 

 

# Observation space 

xPmin = -xPmax; yPmin =  -yPmax 

EP = np.zeros([nP,nP])+np.zeros([nP,nP])*1j          

 

xP1 = linspace(xPmin,xPmax,nP)      

yP1 = linspace(yPmin,yPmax,nP) 

xP, yP = np.meshgrid(xP1,yP1) 

 

# Simpson [2D] coefficients 

S = np.ones(nQ) 

R = np.arange(1,nQ,2);   S[R] = 4; 

R = np.arange(2,nQ-1,2); S[R] = 2 

scx, scy = np.meshgrid(S,S) 

S = scx*scy 
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# % COMPUTATION OF DIFFRACTION INTEGRAL FOR ELECTRIC 
FIELD % IRRADIANCE- 

 

for c1 in range(nP): 

    for c2 in range(nP): 

         rPQ = np.sqrt((xP[c1,c2] - xQ)**2 + (yP[c1,c2] - yQ)**2 + zP**2) 

         rPQ3 = rPQ*rPQ*rPQ 

         kk = ik * rPQ 

         MP1 = exp(kk) 

         MP1 = MP1 / rPQ3 

         MP2 = zP * (ik * rPQ - unit) 

         MP = MP1 * MP2 

         EP[c1,c2] = sum(sum(EQ*MP*S)) 

 

Irr = np.real(EP*np.conj(EP)) 

Irr = Irr/amax(amax(Irr)) 

indexXY = num*2+1    

IY = Irr[:,indexXY] 

IX = Irr[indexXY,:] 

 

# Position of first zero in irradiance 

x0 = wL*zP/(1*aQx)*1e3    # [mm] 

y0 = wL*zP/(1*aQy)*1e3    # [m] 

 


